giả sử N=1.3.5.7...2007.2011
CMR rằng trong 3 số nguyên liên tiếp 2N-1,2N,2N+1
mình cần rất gấp
Giả sử N=1.3.5.7..2017
CMR: Trong 3 số nguyên liên tiếp 2N-1,2N,2N+1 không có số nào là số chính phương.
Giúp mik làm này nha. Thanks các bạn nhìu lắm.
Giả sử N = 1.3.5.7 . . . 2007. 2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N và 2N + 1 không có số nào là số
chính phương.
Giả sử N=1.3.5.7...2007. Chứng minh rằng trong 3 ssos nguyên liên tiếp 2N-1, 2N và 2N+1 không có số nào là số chính phương.
giúp với
CMR 2n+1,2n+3 là 2 số nguyên tố cùng nhau với n thuộc N
mình cần rất gấp
Ok để mình giúp bạn
Gọi d là ước chung lớn nhất của (2n+1, 2n+3)
=> 2n+1 chia hết cho d
2n+3 cũng chia hết cho d
Trừ đi => 2 chia hết cho d
=> d =1 hoặc 2
Nếu d=2 => 2n+1; 2n+3 chia hết cho 2
=> Vô lí do 2n+1; 2n+3 là 2 số lẻ
=> d=1
=> (2n+1; 2n+3)=1
=> 2n+1 và 2n+3 nguyên tố cùng nhau.
GỌI d LÀ UCLN CỦA (2n+1;2n+3)(d\(\in\)N*)
=>\(2n+1⋮d\)và\(2n+3⋮d\)
=>\(\left(2n+3-2n-1\right)⋮d\)
=>\(2⋮d\)
mà \(2n+1\)lẻ => d lẻ => d=1
=>\(2n+1\)và\(2n+3\)là 2 số nguyên tố cùng nhau
Cho N = 1.3.5.7....2013. Chứng minh rằng trong 3 số tự nhiên liên tiếp 2N -1; 2N ;2N + 1 ko có số nào là số chính phương
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N không là số chính phương
Vì 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là số chính phương
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N chia cho 4 dư 2
=> 2N + 1 chia cho 4 dư 3
=> 2N + 1 không là số chính phương
Vậy trong 3 số tự nhiên liên tiếp 2N - 1, 2N, 2N + 1 không có số nào là số chính phương.
N=1.3.5.7...2007.2009.2011
Chứng minh rằng : Trong 3 số liên tiếp 2N-1;2N;2N+1 Không thể là số chính phương.
dễ mà chứng minh nó chia hết cho 2 nhưng không chia hét cho4
cho N=1.3.5.7...2013.2015.Chứng minh rằng trong 3 số liên tiếp 2N-1;2N;2N+1 không có số nào là số chính phương?
Giả sử n=1.3.5.....2017.CMR:trong 3 số 2n-1,2n,2n+1 ko có số nào chính phương
Giả sử \(N=1.3.5.7....2009.2011\)
CMR: trong ba số nguyên liên tiếp 2N-1; 2N; 2N+1 không có số nào là SCP
+ Ta có : \(N=1\cdot3\cdot5\cdot7\cdot...\cdot2011\Rightarrow N⋮3\)
\(\Rightarrow2N⋮3\Rightarrow2N-1\) chia 3 dư 2 => 2N - 1 ko là số chính phương ( do scp chia 3 dư 0 hoặc 1 )
+ Ta lại có : \(2N=1\cdot2\cdot3\cdot5\cdot7\cdot...\cdot2011\Rightarrow\left\{{}\begin{matrix}2N⋮2\\2N⋮̸̸4\end{matrix}\right.\)
=> 2N ko là scp
+ \(\left\{{}\begin{matrix}2N⋮2\\2N⋮̸4\end{matrix}\right.\) => 2N chia 4 dư 2
=> 2N + 1 chia 4 dư 3 => 2N + 1 ko là scp ( do scp chia 4 dư 0 hoặc 1 )