Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 20:35

(3):

a: =>căn 2x-3=x-3

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x=6

b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1

=>x>=-1 và x^2+(m-2)x-4=0

=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0

Vinh Nguyễn
Xem chi tiết
Nguyên Nguyễn Khôi
5 tháng 12 2016 lúc 20:38

-0.5851

Đoàn Thế Phong
2 tháng 12 2016 lúc 20:46

ko bít!

Mạc Thu Hà
19 tháng 2 2017 lúc 8:10

-0,58510698

My Nguyễn
Xem chi tiết
Xem chi tiết
Nobi Nobita
1 tháng 11 2020 lúc 16:12

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

Khách vãng lai đã xóa
Nobi Nobita
1 tháng 11 2020 lúc 16:16

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

Khách vãng lai đã xóa
Phùng Minh Phúc
Xem chi tiết
An Thy
4 tháng 6 2021 lúc 20:05

\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)

Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)

\(\Rightarrow a\ne-1;-9\)

(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)

 

Vuy năm bờ xuy
5 tháng 6 2021 lúc 2:38

\(x^3+3x^2+2x=0\left(1\right)\)

\(\Leftrightarrow x\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow x\left(x^2+x+2x+2\right)=0\)

\(\Leftrightarrow x\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+1=0\end{matrix}\right.\)            \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy phương trình (1) có nghiệm \(x=0;x=-2;x=-1\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1+a\right)=0\left(2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Leftrightarrow x=-1\\x^2+2x+1+a=0\end{matrix}\right.\)

\(\Rightarrow x=-1\) là (1) nghiệm của phương trình (2)

Đặt \(F\left(x\right)=\left(x+1\right)\left(x^2+2x+1+a\right)\)

Có phương trình (1) và (2) có nghiệm chung là =1

Để (1) và (2) có 1 nghiệm chung duy nhất 

Thì \(\left\{{}\begin{matrix}F\left(0\right)\ne0\\F\left(-2\right)\ne0\end{matrix}\right.\)              \(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1+a\right)\ne0\\\left(-2+1\right)\left(4-4+1+a\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\-\left(a+1\right)\ne0\end{matrix}\right.\)            \(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\a\ne-1\end{matrix}\right.\)

-Chúc bạn học tốt-

Anh Quynh
Xem chi tiết
Phan    Minh         Phú
29 tháng 12 2021 lúc 20:45

giải pt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thiên Thương Lãnh Chu
Xem chi tiết
Akai Haruma
16 tháng 5 2021 lúc 22:10

Lời giải:

Dễ thấy 2 PT trên đều có 2 nghiệm phân biệt.

Đối với PT $(1)$, nếu $x_1,x_2$ là 2 nghiệm của  nó, áp dụng định lý Viet ta có:

\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-m^2\end{matrix}\right.\)

\(\Rightarrow \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=-\frac{3}{m^2}\)\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{-1}{m^2}\)

Theo định lý Viet đảo, $\frac{1}{x_1}, \frac{1}{x_2}$ là nghiệm của PT:

\(x^2+\frac{3}{m^2}x-\frac{1}{m^2}=0\Leftrightarrow m^2x^2+3x-1=0\)

Do đó ta có đpcm.

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 2 2022 lúc 15:12

b: Thay x=-5 vào pt, ta được:

\(m+25+65=0\)

hay m=-90

Theo đề, ta có: \(x_1+x_2=13\)

nên \(x_2=18\)

c: Thay x=-3 vào pt, ta được:

\(18+3\left(m+4\right)+m=0\)

=>4m+30=0

hay m=-15/2

Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)

hay \(x_2=-1.25\)

Tử Minh Thiên
Xem chi tiết
Edogawa Conan
9 tháng 1 2020 lúc 13:25

Ta có: 3x(x + 1) - 2x(x + 2) + x + 1 = 0

<=> 3x2 + 3x - 2x2 - 4x + x + 1 = 0

<=> x2 + 1 = 0

=> pt vô nghiệm vì x2  + 1 > 0 với mọi x

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
9 tháng 1 2020 lúc 14:59

Ta có :

\(3x\left(x+1\right)-2x\left(x+2\right)+x+1=0\)

\(\Leftrightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Leftrightarrow x^2+1=0\)

Mà \(\hept{\begin{cases}x^2\ge0\\1>0\end{cases}\Rightarrow}x^2+1>0\)

=> Phương trình vô nghiệm.

Khách vãng lai đã xóa
Chu Công Đức
9 tháng 1 2020 lúc 18:50

\(3x\left(x+1\right)-2x\left(x+2\right)+x+1=0\)

\(\Leftrightarrow3x^2+3x-2x^2-4x+x+1=0\)\(\Leftrightarrow x^2+1=0\)

Vì \(x^2+1\ge1\)\(\Rightarrow\)Phương trình vô nghiệm

Vậy phương trình có tập nghiệm \(S=\varnothing\)

Khách vãng lai đã xóa