Tìm số nghiệm của phương trình
\(\sqrt{2x-1}+x^2-3x+1=0\)0
(3)
a) gpt: \(\sqrt{2x-3}-x+3=0\)
b) tìm các giá trị của tham số m để pt \(\sqrt{2x^2+mx-3}=x+1\) có 2 nghiệm phân biệt.
(4) trong mặt phẳng tọa độ Oxy, cho điểm I (1; -2) và 2 đg thẳng d1: 3x+y+5=0, d2: 3x+y+1=0.
a) viết phương trình đg thẳng d vuông góc với đg thẳng d1 và đi qua gốc tọa độ
b) viết pt đg thẳng đi qua 1 và cắt d1, d2 lần lượt tại A và B sao cho AB= \(2\sqrt{2}\)
giúp mk vs ạ mk cần gấp
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
tìm 1 nghiệm của phương trình
\(3x^5-2x^2+3x+\sqrt{7}=0\)0
Số nghiệm của phương trình \(\sqrt{2x+1}+x^2-3x+1=0\)là?
giải phương trình:
\(x^3-x^2-x-2=0\)
\(\frac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
tìm nghiệm nguyên của phương trình;
\(2x^2+y^2-2xy+2y-6x+5=0\)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
Cho hai phương trình:
\(x^3+3x^2+2x=0\) và \(\left(x+1\right)\left(x^2+2x+1+a\right)=0\) (với x là ẩn số). Tìm các giá trị của a để hai phương trình trên chỉ có một nghiệm chung duy nhất
\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)
Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)
\(\Rightarrow a\ne-1;-9\)
(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)
\(x^3+3x^2+2x=0\left(1\right)\)
\(\Leftrightarrow x\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow x\left(x^2+x+2x+2\right)=0\)
\(\Leftrightarrow x\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy phương trình (1) có nghiệm \(x=0;x=-2;x=-1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1+a\right)=0\left(2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Leftrightarrow x=-1\\x^2+2x+1+a=0\end{matrix}\right.\)
\(\Rightarrow x=-1\) là (1) nghiệm của phương trình (2)
Đặt \(F\left(x\right)=\left(x+1\right)\left(x^2+2x+1+a\right)\)
Có phương trình (1) và (2) có nghiệm chung là =1
Để (1) và (2) có 1 nghiệm chung duy nhất
Thì \(\left\{{}\begin{matrix}F\left(0\right)\ne0\\F\left(-2\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1+a\right)\ne0\\\left(-2+1\right)\left(4-4+1+a\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\-\left(a+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\a\ne-1\end{matrix}\right.\)
-Chúc bạn học tốt-
Dùng công thức nghiệm,giải các phương trình sau:
a. \(x^2+3x+4=0\)
b. \(4x^2-4x+1=0\)
c. \(x^2-5x-6=0\)
d. \(3x^2+12x-2=0\)
e. \(x^2+2\sqrt{5}x-1=0\)
f. \(2x^2-4\sqrt{2}x+2=0\)
Chứng minh rằng nghiệm của phương trình \(x^2-3x-m^2=0\) là nghịch đảo các nghiệm của phương trình \(m^2x^2+3x-1=0\) khi m ≠ 0
Lời giải:
Dễ thấy 2 PT trên đều có 2 nghiệm phân biệt.
Đối với PT $(1)$, nếu $x_1,x_2$ là 2 nghiệm của nó, áp dụng định lý Viet ta có:
\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-m^2\end{matrix}\right.\)
\(\Rightarrow \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=-\frac{3}{m^2}\); \(\frac{1}{x_1}.\frac{1}{x_2}=\frac{-1}{m^2}\)
Theo định lý Viet đảo, $\frac{1}{x_1}, \frac{1}{x_2}$ là nghiệm của PT:
\(x^2+\frac{3}{m^2}x-\frac{1}{m^2}=0\Leftrightarrow m^2x^2+3x-1=0\)
Do đó ta có đpcm.
a.Tìm m để phương trình \(3x^2+mx-35=0\) có 1 nghiệm là 7.Tìm nghiệm còn lại?
b.Tìm m để phương trình \(x^2-13x+m=0\) có 1 nghiệm là -5.Tìm nghiệm còn lại?
c.Tìm m để phương trình \(2x^2-\left(m+4\right)x+m=0\) có 1 nghiệm là -3.Tìm nghiệm còn lại?
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
Số nghiệm của phương trình 3x(x + 1) - 2x(x + 2) + x + 1 = 0
Ta có: 3x(x + 1) - 2x(x + 2) + x + 1 = 0
<=> 3x2 + 3x - 2x2 - 4x + x + 1 = 0
<=> x2 + 1 = 0
=> pt vô nghiệm vì x2 + 1 > 0 với mọi x
Ta có :
\(3x\left(x+1\right)-2x\left(x+2\right)+x+1=0\)
\(\Leftrightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Leftrightarrow x^2+1=0\)
Mà \(\hept{\begin{cases}x^2\ge0\\1>0\end{cases}\Rightarrow}x^2+1>0\)
=> Phương trình vô nghiệm.
\(3x\left(x+1\right)-2x\left(x+2\right)+x+1=0\)
\(\Leftrightarrow3x^2+3x-2x^2-4x+x+1=0\)\(\Leftrightarrow x^2+1=0\)
Vì \(x^2+1\ge1\)\(\Rightarrow\)Phương trình vô nghiệm
Vậy phương trình có tập nghiệm \(S=\varnothing\)