Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Ngọc Trâm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2019 lúc 17:42

* Với n =1  ta có 1 3 + 11.1 = 12  chia hết cho 6 đúng.

* Giả sử với n = k thì k 3   + 11 k chia hết cho 6.

* Ta phải chứng minh với n =k+1  thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.

Thật vậy ta có :

k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12   *

Ta có; k 3 +11k chia hết cho 6 theo bước 2.

k(k+1) là tích 2 số tự  nhiên liên tiếp nên chia hết cho 2  ⇒ 3 k ( k + 1 ) ⋮ 6

Và 12 hiển nhiên chia hết cho 6.

Từ đó suy ra (*) chia hết cho 6 (đpcm).

Hiệu Bùi Đức
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 11:14

Với \(n=0\Rightarrow0-0+0-0+0-0=0⋮24\left(đúng\right)\)

Với \(n=1\Rightarrow1-3+6-7+5-2=0⋮24\left(đúng\right)\)

G/s \(n=k\Rightarrow\left(k^6-3k^5+6k^4-7k^3+5k^2-2k\right)⋮24\)

\(\Rightarrow k\left(k^5-3k^4+6k^3-7k^2+5k-2\right)⋮24\\ \Rightarrow k\left(k+1\right)\left(k^2+k+1\right)\left(k^2-k+2\right)⋮24\)

Với \(n=k+1\), ta cần cm \(\left[\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\right]⋮24\)

Ta có \(\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\)

\(=\left(k+1\right)\left[\left(k+1\right)^5-3\left(k+1\right)^4+6\left(k+1\right)^3-7\left(k+1\right)+5\left(k+1\right)-2\right]\\ =\left(k+1\right)\left(k+1-1\right)\left[\left(k+1\right)^2-\left(k+1\right)+1\right]\left[\left(k+1\right)^2-\left(k+1\right)+2\right]\\ =k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)\)

Mà theo GT quy nạp ta có \(k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)⋮24\)

Vậy ta được đpcm

 

Hoàng Phúc
Xem chi tiết
OoO Pipy OoO
1 tháng 8 2016 lúc 10:04
Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^

Vũ Lê Ngọc Liên
Xem chi tiết
Đỗ Lê Tú Linh
26 tháng 12 2015 lúc 21:49

chả có j mà ngồi cười như thật!

Nguyễn Quốc Khánh
26 tháng 12 2015 lúc 21:59

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31

Nguyễn Văn Hoàng Anh
15 tháng 3 2017 lúc 21:54

bác Khánh làm hay thật 

Đinh Thị Ngọc Trâm
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 11 2019 lúc 1:18

Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)

Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)

Thật vậy:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)

\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)

Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)

\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)

Khách vãng lai đã xóa
Tiddy
Xem chi tiết
Tiddy
Xem chi tiết
Tiddy
Xem chi tiết