Học tập thanh niên shitbo.
Tìm nghiệm nguyên pt:
\(1+x+x^2+x^3=y^3\)
Tìm nghiệm nguyên pt:
1+x+x^2+x^3=y^3 (học tập thanh niên shitbo)
tìm nghiệm nguyên của pt
x+1+x^2+x^3=y^3
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
1,,giải pt nghiệm nguyên dương sau với x ,y đôi 1 khác nhau : x^3+y^3+z^3=(x+y+z)^2
giải pt nghiệm nguyên : 1+x+x^2+x^3=y^3
giải pt nghiệm nguyên dương sau :3(x^4+y^4+x^2+y^2+2)=2(x^2-x+1)(y^2-y+1)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
Giải PT nghiệm nguyên (x^2+y)(x+y^2)=(x+y)^3 (x,y thuộc N*)
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)
\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)
TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\)
TH2: \(xy-3x-3y+1=0\)
\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)
Từ đó ta có bảng:
\(x-3\) | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
\(y-3\) | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
\(x\) | 4 | 11 | 5 | 7 | 2 | -5 | 1 | -1 |
\(y\) | 11 | 4 | 7 | 5 | -5 | 2 | -1 | 1 |
Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)
Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:
\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\); \(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)
GIẢI CÁC PT NGHIỆM NGUYÊN SAU
A.1+X+X^2+X^3=Y^3
B.X^3-Y^3-2XY^2-3Y-1=0
+Trác nghiệm số học:
9.Với giá trị nào của m thì pt (m-4)x+5=0 trở thành pt bậc nhất :
a.m=4 b.m ≠ 4 c.m= -4 d.m= ≠ 4
11.x= \(\frac{2}{3}\) là nghiệm của pt nào?
a. 2x+3 = 0 b.3-2x = 0 c.3x-2 = 0 d.3x + 2 = 0
12.Phương trình x+3-x = 3 có nghiệm:
a.Vô nghiệm b. Vô số nghiệm c.một nghiệm d. 2 nghiệm
13.Giải pt x2 -5x-6=0 ta có tập nghiệm:
a. S=(-1) b. S=(6) c. S=(-1;6) d. S=(1;-6)
14. Cho các phương trình x=0, x(x-3) = 0, x-3=0, x2 -3x=0, Ta có:
a.x=0 ⇔ x-3=0 b.x2 -3x =0⇔x(x-3)=0 c.x-3=0⇔x2 -3x=0 d.x=0⇔x(x-3)=0
15.Cho pt (1) có tập nghiệm S1 =(3;-2), pt (2) tương đương với pt (1) nếu có tập nghiệm S2 là:
a.S2 =(-3;2) b.S2 =(-2;3) c.S2 =(-3;-2) d.S2 =(2;3)
16.Với giá trị của m thì x=1 là nghiệm của pt mx2 -4=0 :
a.m=0 b.∀m∈R c.m=2 d.m=4