Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Bảo Ly
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2023 lúc 16:33

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt

 

 

Lâm Khánh Ly
Xem chi tiết
Mai Anh
3 tháng 2 2022 lúc 17:05

1.

`16 + (27 - 7.6 ) - (94 -7 - 27.99)`

`= 16+ 27 - 7.6 - 94 + 7 + 27.99`

`= 16 + 27(99 +1) - 7(6-1) - 94`

`= -78 + 27.100 - 7.5`

`= 2587`

2.

`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`

`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`

`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`

`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`

`3/2A = 1 - 1/100`

`3/2 A= 99/100`

`A= 99/100 : 3/2`

`A=33/50`

Vậy `A= 33/50`

Trần Đức Huy
3 tháng 2 2022 lúc 17:04

1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99

                                           =(27+27.99)+(27+7-94)+16

                                           =27.100-60+16

                                           =2700-44=2656

2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)

     =\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

     =\(1-\dfrac{1}{100}=\dfrac{99}{100}\)

Trần Tuấn Hoàng
3 tháng 2 2022 lúc 17:06

1) \(16+\left(27-7.6\right)-\left(94-7-27.99\right)\)

=\(16+27-7.6-94+7+27.99\)

=\(\left(27+27.99\right)+\left(-7.6+7\right)+\left(16-94\right)\)

=\(27\left(1+99\right)+7\left(-6+1\right)-78\)

=\(27.100-7.5-78=2700-35-78=2587\).

2) \(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)

\(A=\dfrac{2.3}{1.4.3}+\dfrac{2.3}{4.7.3}+\dfrac{2.3}{7.10.3}+...+\dfrac{2.3}{97.100.3}\)

\(A=\dfrac{2}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(A=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(A=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{100}\right)=\dfrac{2}{3}.\dfrac{99}{100}=\dfrac{33}{50}\)

Ngu Công
Xem chi tiết
Chu Mi Mi
13 tháng 2 2020 lúc 9:45

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\)

\(S=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(S=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

Khách vãng lai đã xóa
Ngọc Lan
13 tháng 2 2020 lúc 9:49

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4849}{9900}\)

\(\Rightarrow S=\frac{4949}{9900}\div2=\frac{4949}{19800}\)

Khách vãng lai đã xóa
Tiểu Thư Họ Đỗ
Xem chi tiết
Lucy Heartfilia
1 tháng 6 2017 lúc 14:28

S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)

S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)

S = \(\dfrac{2014}{6015}\)

Hoàng Thị Ngọc Anh
1 tháng 6 2017 lúc 14:20

a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)

KL.

b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)

KL.

c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)

KL.

Đức Hiếu
1 tháng 6 2017 lúc 15:00

\(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+......+\dfrac{1}{98.99.100}\)

\(2Q=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+........+\dfrac{2}{98.99.100}\)

\(2Q=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

(do \(\dfrac{2}{a.\left(a+1\right).\left(a+2\right)}=\dfrac{1}{a.\left(a+1\right)}-\dfrac{1}{\left(a+1\right).\left(a+2\right)}\))

\(2Q=\dfrac{1}{1.2}-\dfrac{1}{99.100}\)

\(2Q=\dfrac{1}{2}-\dfrac{1}{9900}=\dfrac{4949}{9900}\)

\(Q=\dfrac{4949}{9900}:2=\dfrac{4949}{19800}\)

Chúc bạn học tốt!!!

trần thùy dương
Xem chi tiết
Nguyễn Tiến Dũng
4 tháng 9 2017 lúc 7:58

A=12+22+...+992

2A=22+32+...+1002

2A-A=(22+32+...+1002)-(12+22+...+992)

A=1002-12

A=10000-1

A=9999

Hồ Trúc
Xem chi tiết
Lightning Farron
10 tháng 8 2016 lúc 22:12

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2S=\frac{1}{2}-\frac{1}{9900}\)

\(2S=\frac{4949}{9900}\)

\(S=\frac{4949}{19800}\)

Vương Hàn
11 tháng 8 2016 lúc 8:55

Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)

...

\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)

=> 2S = \(\frac{4949}{9900}\)

=> S = \(\frac{4949}{19800}\)

Nguyễn Kim Thành
10 tháng 3 2017 lúc 14:15

2S=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\)

2S= \(1-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)2S= 1- \(\dfrac{1}{100}\)

2S= \(\dfrac{99}{100}\)

S= \(\dfrac{99}{100}.\dfrac{1}{2}\)

S=\(\dfrac{198}{100}\)

hoang le
Xem chi tiết
Kuroba Kaito
11 tháng 6 2015 lúc 10:18

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}

Anh Nhật
Xem chi tiết
Nguyễn Vân Anh
Xem chi tiết
Ultimate Legend
17 tháng 4 2016 lúc 11:09

s= (2/1.2.3 +2/2.3.4+...+2/98.99.100):2=  (1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100):2=(1/1.2-1/99.100):2=4949/19800=>S=4949/19800

Trần Thùy Trang
17 tháng 4 2016 lúc 11:08

bài này cô dạy mk rùi, nhưng ko mún viết, mỏi tay

Kiều Anh
17 tháng 4 2016 lúc 11:09

\(CM:\frac{1}{a.\left(a+1\right)\left(a+2\right)}=\frac{1}{a.\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(s=\frac{1}{1.2}-\frac{1}{99.100}\)