cho tam giac ABC can tai A, M la 1 diem nam tren BC,MB<MC ke ME//AC,MF//AB N la diem doi xung voi M qua EF,AN cat BC tai H chung minh HB.HC=HN.HA
cho tam giac ABC can tai A, M la 1 diem nam tren BC,MB<MC ke ME//AC,MF//AB N la diem doi xung voi M qua EF,AN cat BC tai H chung minh HB.HC=HN.HA
cho tam giac abc can tai a, m la trung diem cua bc, lay diem d tren ab, e tren ac sao cho ce=mb^2/bd. chung minh tam giac dbm dong dang voi tam giac mce
cho tam giac ABC , M la trung diem tren AC . Tren tia doi cua tia MB lay diem D sao cho MD = MB . Ve CE vuong goc AD tai E . Goi F la diem nam tren canh BC sao cho BF = DE . Chung minh rang:
a) tam giac ABC = tam giac CDA
b) AF vuong goc voi Bc
c)M,E,F thang hang
Cho Tam giac ABC can tai A , tren tia doi cua BC lay diem D , tren tia doi cua CB lay diem E sao cho BD = CE . Tu B ke BM vuong goc voi AD , tu C ke CN vuong goc voi AE , MB cat NC tai K
d,c/m tam giac KMN la tam giac can
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
trong tam giac ABC cân tai A co M la 1 diem thuoc BC sao cho MB<MC . điểm O nam tren AM.CMR AOB<AOC
Cho tam giac ABC can tai A (goc A<90) mot cung tron BC nam ben trong tam giac ABC tiep xuc voi AB , AC tai B, C. Tren cung BC lay diem M roi ha cac duong vuong goc MI,MH,MK xuong cac canh tuong ung BC,CA,AB. Goi Q la giao diem cua MB, IK. Goi P la giao diem cua MC,IH.
Chung minh PQ//BC
cho tam giac ABC can tai A . M la mot diem thay doi tren BC . c/m rang khi M la mot diem bat ki tren BC thi tong khoang canh tu M den 2 canh AB va AC la ko doi
cho tam giac nhon ABC ve ra phia ngoai tam giac vuong can ABD va AEC(vuong can tai B va tai C ). tren tia doi cua tia AH lay diem I sao cho AI=BC(AH vuong goc voiBC(H thuoc BC)cm
a)tam giac ABI=tam giac BDC
b)Bivuong goc voi CD
Cho tam giac ABC can tai A.Goi M la trung diem cua AC.Tren tia doi cua tia MB lay diem D sao cho DM=BM
a, Chung minh tam giac BMC= DMA.suy ra AD//BC
b, Chung minh tam giac ACD la tam giac can
c, Tren tia doi cua tia CA lay diem E sao cho CA=Ce.Goi I la giao diem cua BC va DE.Chung minh I la trung diem cua DE
a, xét t.giác BMC và t.giác DMA có:
BM=DM(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)
AM=MC(gt)
=>t.giác BMC=t.giác DMA(c.g.c)
=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC
b,xét t.giác MAB và t.giác MCD có:
MA=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
MB=MD(gt)
=>t.giác MAB=t.giác MCD(c.g.c)
=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC
xét t.giác DAB và t.giác DCB có:
\(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)
DB cạnh chung
\(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)
=>t.giác DAB=t.giác DCB(g.c.g)
=>DA=DC
=>t.giác ACD cân tại D
Cho tam giac ABC can tai A. Goi M la trung diem cua AC. Tren tia doi cua tia MB lay diem D sao cho DM=BM
a. Chung minh tam giac BMC bang tam giac DMA. Suy ra AD // BC
b. Chung minh tam giac ACD la tam giac can
c. Tren tia doi cua tia CA lay E sao cho CA =CE. Chung minh DC di qua trung diem I cua BE
a) Xét tam giác BMC và tam giác DMA có:
AM=AC( M là trung điểm của AC)
AMD^= BMC^( 2 góc đối đỉnh)
BM=MD( gt)
Suy ra: tam giác BMC= tam giác DMA( c.g.c)( đpcm)
b) Xét tam giác DMC và tam giác BMA có:
MB= MD( gt)
DMC^= AMB^( đối đỉnh)
MA=MC( M là trung điểm của AC)
Suy ra: Tam giác DMC= tam giác BMA( c.g.c)
=> AB=DC( 2 cạnh tương ứng)(1)
Mà AB= AC( Tam giác ABC cân tại A)(2)
Từ (1) và (2)
=> DC=AC
=> tam giác ADC cân tại C( đpcm)
c) có tam giác BMC = tam giác DMA(cmt)
=> BM=DM ( 2 cạnh t/ ứ)
=> M là trung điểm của BD
xét tam giác BDE có
EM là trung tuyến ứng vs BD ( M là trung điểm của BD)
CI là trung tuyến ứng vs BE ( I là trung điểm của BE)
mà EM giao vs CI tại C
=> C là trọng tâm
=> DC là trung tuyến ứng vs BE
mà CI cũng là đường trung tuyến ứng vs BE(cmt)
=> DC trùng với CI
=> D,C,I thẳng hàng
vậy DC đi qua trung điểm I của BÉ