tìm nghiệm nguyên của phương trình \(4x^2-7y^2=2022\)
Tìm nghiệm nguyên của phương trình :4x^2 -7y^2 =2022
Tìm nghiệm nguyên của phương trình :4x^2 -7y^2 =2022
Giúp với ới ới ới ới , cần gấp ấp ấp ấp , đây là một trong những bài của đề thi HSG Huyện Thanh Chương năm 2019-2020
\(4x^2-7x^2=2022\)
\(\Leftrightarrow4x^2=2022+7y^2\)
Có: VT\(⋮4\)
=> VP\(⋮4\)
=> VP \(⋮2\)
=> 7y^2 \(⋮2\)
=> 7y^2 \(⋮4\)
=> 2022 \(⋮4\)( vô lý )
=> không tìm được x;y thỏa mãn
P/S: sai thì sửa hộ nhé
Tìm nghiệm nguyên của phương trình:
x^4 -2y^4 - x^2.y^2 - 4x^2 - 7y^2 - 5 =0
Tìm nghiệm nguyên của phương trình:
x^4 -2y^4 - x^2.y^2 - 4x^2 - 7y^2 - 5 =0
h
0 = x⁴ - 2y⁴ - x²y² - 4x² - 7y² - 5
= (x⁴ + x²y² + x²) - (2x²y² + 2y⁴ + 2y²) - (5x² + 5y² + 5)
= x²(x² + y² + 1) - 2y²(x² + y² + 1) - 5(x² + y² + 1)
= (x² - 2y² - 5)(x² + y² + 1)
<=> x² - 2y² - 5 = 0
<=> x² - 5 = 2y²
Đến đây thấy rằng x² - 5 chẵn => x = 2a + 1 => x² - 5 = 4a² + 4a - 4
=> 2a² + 2a - 2 = y² => y = 2b => a² + a - 1 = 2b² <=> a(a + 1) = 2b² + 1
Do a(a + 1) luôn là số nguyên chẵn (vì a và a + 1 là 2 số nguyên liên tiếp) mà 2b² + 1 luôn lẻ => pt không có nghiệm nguyên
--------… ∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★ ✰
Tìm nghiệm nguyên của phương trình:
x4 - 2y4 - x2y2 - 4x2 - 7y2 - 5 = 0
Tìm nghiệm nguyên của các phương trình sau:
a) 12x - 7y = 45
b) 9x + 20y = 547
c) 4x + 5y = 2012
Tìm nghiệm nguyên của các phương trình sau:
a) 12x - 7y = 45 (1)
ta thấy 45 và 12 chia hết cho 3 nên y cũng phải chia hết cho 3
đặt y=3k, ta có:
12x-7.3k=45
<=> 4x-7k=15 (chia cả 2 vế cho 3)
<=> x= \(\frac{15+7k}{4}\)
<=> x= \(2k+4-\frac{k+1}{4}\)
đặt t=\(\frac{k+1}{4}\)(t \(\in\) Z) => k = 4t – 1
Do đó
x = 2(4t – 1) + 4 – t = 7t + 2
y = 3k = 3(4t - 1) = 12t – 3
Vậy nghiệm nguyên của phương trình được biểu thị bởi công thức:
\(\hept{\begin{cases}x=7t+2\\y=12t-3\end{cases}}\)
Câu b và c bạn làm tương tự
Thấy đúng thì k cho mình nhé
Tìm nghiệm nguyên của phương trình: 4x2+ 5y2 = 2022
\(4x^2+5y^2=2022\) (1)
-Vì \(4x^2⋮2\) và \(2022⋮2\) nên \(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
-Đặt \(y=2k\left(k\in Z\right)\) và thay vào (1) ta được:
\(4x^2+5.\left(2k\right)^2=2022\)
\(\Leftrightarrow4x^2+5.4k^2=2022\)
\(\Leftrightarrow4x^2+20k^2=2022\)
\(\Leftrightarrow x^2+5k^2=\dfrac{2022}{4}=505.5\) (vô lý do x,k là các số nguyên)
-Vậy phương trình vô nghiệm.
Tìm NGHIỆM NGUYÊN của phương trình sau:
\(7x^2+7y^2+7xy-39x-39y=0\)
Ta có: \(7\left(x^2+xy+y^2\right)=39\left(x+y\right)\) nên \(x^2+xy+y^2⋮39\) \(x+y⋮7\)
Đặt \(x^2+xy+y^2=39k;x+y=7k\) \(\left(k\in N\right)\) vì \(x^2+xy+y^2\ge0\)
\(\Rightarrow xy=\left(x+y\right)^2-\left(x^2+xy+y^2\right)=49k^2-39k\)
Theo Viet x,y là nghiệm của phương trình \(a^2-49k^2a+49k^2-39k=0\)
Phương trình có 2 nghiệm khi \(\Delta=49k^2-4.49k^2+4.39k=156k-147k^2=k\left(156-147k\right)\ge0\)
Vì k>0 nên \(156>147k\), vì k nguyên nên k=1
Do đó ta có x + y = 7,xy=10 nên áp dụng viet, ta giải được (x,y)=(2;5);(5;2)
Đó là giá trị nguyên cần tìm
Tìm nghiệm nguyên của phương trình: 3x2 + 13xy + 26(x − y) + 39y2 = 2022