Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
elisa
Xem chi tiết
KAl(SO4)2·12H2O
14 tháng 11 2019 lúc 21:25

Bài 1:

a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}\)

\(=\frac{4}{\sqrt{5}-\sqrt{3}}-2\sqrt{3}\)

\(=\frac{4\sqrt{5}+4\sqrt{3}}{\sqrt{5^2}-\sqrt{3^2}}-2\sqrt{3}\)

\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}\)

\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{2}-2\sqrt{3}\)

\(=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}\)

\(=2\sqrt{5}+2\sqrt{3}-2\sqrt{3}\)

\(=2\sqrt{5}\)

b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)

\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)

\(=\frac{3\sqrt{2}}{2.2}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{3.2}\)

\(=\frac{3\sqrt{2}}{4}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{6}\)

\(=-\frac{23\sqrt{2}}{12}\)

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
14 tháng 11 2019 lúc 21:36

chung ta den bai 2 :3

a) \(\frac{x}{\sqrt{x}-2}=-1\)

\(\Leftrightarrow x=-\sqrt{x}+2\)

\(\Leftrightarrow x-2=-\sqrt{x}\)

bình phương 2 vế ta được:

\(\Leftrightarrow x^2-4x+4=x\)

\(\Leftrightarrow x^2-4x+4-x=0\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

b) \(\sqrt{x-2}=x-4\)

chúng ta lại bình phương hai vế như câu a và chúng ta được:

\(\Leftrightarrow x-2=x^2-8x+16\)

\(\Leftrightarrow x-2-x^2+8x-16=0\)

\(\Leftrightarrow9x-18-x^2=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=3\end{cases}}\)

Khách vãng lai đã xóa
Lê Hoài Anh
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Victorique de Blois
23 tháng 8 2021 lúc 18:42

a, ĐK :a >= 3

\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)

\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)

b, \(ĐK:x\ge-\frac{1}{2}\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow x=4\left(tm\right)\)

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
23 tháng 8 2021 lúc 18:45

a) đk: \(a\ge3\)

pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)

\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)

\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thúy Hậu
Xem chi tiết
Nguyễn Thúy Hậu
10 tháng 7 2017 lúc 18:18

thực hiện phép tính nha cám ơn m.ng

Phạm Băng Băng
Xem chi tiết
Nyatmax
9 tháng 10 2019 lúc 16:22

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)

Đỗ Minh Anh
Xem chi tiết
Lê Trung Hiếu
21 tháng 7 2019 lúc 21:41

a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

\(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

= -2

b); c); d) làm tương tự

wary reus
Xem chi tiết
Thao Van
18 tháng 8 2016 lúc 17:10

a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)

Thao Van
18 tháng 8 2016 lúc 17:17

a, = \(=\frac{\sqrt{7}-5}{2}-\frac{3-\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{7-4}-\frac{20-5\sqrt{7}}{16-7}=\frac{\sqrt{7}-5-3+\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{9}\)

Thao Van
19 tháng 8 2016 lúc 14:15

b. = \(\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)

Trần Ngọc Hà My
Xem chi tiết
alibaba nguyễn
24 tháng 7 2017 lúc 10:56

a/ \(\frac{1}{2-\sqrt{3}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{4}{\sqrt{3}-1}\)

\(=2+\sqrt{3}+\sqrt{3}+1-2\sqrt{3}-2\)

\(=1\)

b/ \(\sqrt{3x+40}-4=x\)

\(\sqrt{3x+40}=x+4\)

Điều kiện: \(\hept{\begin{cases}3x+40\ge0\\x+4\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-\frac{40}{3}\\x\ge-4\end{cases}}\)

\(\Leftrightarrow x\ge-\frac{40}{3}\)

Ta có: \(3x+40=x^2+8x+16\)

\(\Leftrightarrow x^2+5x-24=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\left(l\right)\\x=3\end{cases}}\)

Trần Ngọc Hà My
Xem chi tiết
Hoàng Thị Lan Hương
23 tháng 7 2017 lúc 18:48

a. Ta có \(\frac{1}{2-\sqrt{3}}+\frac{3\sqrt{3}}{\sqrt{3}}-\frac{4}{\sqrt{3}-1}=\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+3-\frac{4\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=\frac{2+\sqrt{3}}{4-3}+3-\frac{4\left(\sqrt{3}+1\right)}{3-1}=2+\sqrt{3}+3-2\sqrt{3}-2=3-\sqrt{3}\)

b. \(\sqrt{3x+40}-4=x\)

ĐK \(3x+40\ge0\Leftrightarrow x\ge-\frac{40}{3}\)

\(\Leftrightarrow\sqrt{3x+40}=x+4\)\(\Leftrightarrow\hept{\begin{cases}x\ge-4\\3x+40=x^2+8x+16\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x^2+5x-24=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-4\\\left(x+8\right)\left(x-3\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x=-8;x=3\end{cases}}}\Leftrightarrow x=3\left(tm\right)\)

Vậy x=3