Chứng minh 3^2016+3^2017+3^2018 chia hết cho 13
Cho S= 1+31+32+ 33+...+32016+32017+32018.
Chứng minh S chia hết cho 13
Ahihi
Nhón ba số đầu với nhau cứ thế cho đến hết
(1+3+3^2)+...+(3^2016+3^2017+3^2018)
=13+...+3^2016(1+3+3^2)
=13+...+3^2016x13
=13(1+...+3^2016)
vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13
Chuẩn không nhớ
\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)
\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{2016}.13\)
\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)
Hok tốt
Chứng minh 212018+392017 chia hết cho 45
Có 21^2018 luôn có chữ số tận cùng là 1
Có 39 là số có c/s tận cùng là 9 => 39^2017 có c/s tận cùng là 9 ( vì 2017 là số mũ lẻ )
=> 21^2018 + 39^2017 có c/s tận cùng là 0 nên \(⋮5\)(1)
Có \(21^{2018}+39^{2017}=21^{2016}\cdot21^2+39^{2015}\cdot39^2\)
\(=21^{2016}\cdot3^2\cdot7^2+39^{2015}\cdot3^2\cdot13^2\)
\(=21^{2016}\cdot9\cdot7^2+39^{2015}\cdot9\cdot13^2\)
\(=9\cdot\left(21^{2016}\cdot7^2+39^{2015}\cdot13^2\right)\)
\(\Rightarrow21^{2018}+39^{2017}⋮9\left(2\right)\)
Từ (1) và (2) mà ước chung lớn nhất (5;9)=1 => \(21^{2018}+39^{2017}⋮45\)(vì 5*9=45) (điều phải chứng minh)
A = 3^1+3^2+3^3+...+3^30. Chứng minh rằng A chia hết cho 4, A chia hết cho 13
\(A=3^1+3^2+...+3^{30}\)
=> A=3(1+3) +...+ 329(1+3)
=3.4+ ... + 329.4 \(⋮\)4
Chia het 13 ban lam tuong tu nhe
a)chứng mình rằng : 14^14-1 chia hết cho 13
b)chứng minh rằng : 2015^2016 -1 chjia hết cho 2014
a) Ta sẽ dùng cách cm gián tiếp:
Cho A = 14^13 + 14^12 + .... +14 + 1
=> 14A = 14^14 + 14^13 +...+14^2 +14
=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)
13A = 14^14 - 1
Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)
b) Tương tự như vậy:
Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1
=> 2015B = 2015^2016 + 2015^2015 +...+2015^2 +2015
=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)
2014B = 2015^2016 - 1
Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)
Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :
a, 14^14đồng dư 1^14đồng dư 1(mod13)
Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13) (đpcm)
b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1
...........rồi bạn suy ra nhé
A=4^2015+4^2016+4^2017+4^2018. chung minh rang tong A chia hết cho 5
A=4^2015+4^2016+4^2017+4^2018
A=(4^2015+4^2016)+(4^2017+4^2018)
A=4^2015.(1+4)+4^2017.(1+4)
A=5.(4^2015+4^2017)
=>A chia hết cho 5
\(M=2+2^2+2^3+2^4+.........+2^{2017}+2^{2018}\)
a)Tính M
b)Chứng tỏ M chia hết cho 3
Help nhé!!!
\(a,\)\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)
\(2M=2^2+2^3+2^4+2^5+....+2^{2018}+2^{2019}\)
\(M=2^{2019}-2\)
\(b,\)\(M=2+2^2+2^3+2^4+....+2^{2017}+2^{2018}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2017}+2^{2018}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+....+2^{2017}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{2017}\right)⋮3\)
Cho A= 1+3+32+...+311.Chứng minh:
a) A chia hết co 13
b) A chia hết cho 40
a, C=(1+3+3^2)+..........+3^9.(1+3+3^2)
C=13+.......+3^9.13
C=13(1+.....+3^9) chia hết cho 13
Vậy C chia hết cho 13
b, C=(1+3+3^2+3^3)+...........+3^8(1+3+3^2+3^3)
C=40+..........+3^8.40
C=40(1+....+3^8) chia hết cho 40
Vậy C chia hết cho 40
a) A = (1+3+32) + (33 + 34 + 35) + ... + (39 + 310 + 311)
A = 13 + 33.(1+3+32) + ... + 39.(1+3+32)
A = 13 + 33.13 + ... + 39.13
A = 13.(1+33+...+39) chia hết cho 13 (đpcm)
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 40 + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)
A = 40 + 34.40 + 38.40
A = 40.(1 + 34 + 38) chia hết cho 40 (đpcm)
Chứng tỏ rằng (20165 + 20166) chia hết cho 2017
Cho 2a + 5 chia hết cho 7 . Chứng minh rằng 10a+11 chia hết cho 7
a + 5b chia hết 3 . Chứng minh rằng : 5a+3 chia hết 3
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!