Bài 4: Tìm giá trời của a và b để đa thức x^4 - 3x^3 + ax^2 + bx - 4 chia hết cho x^2 - 4;
tìm và xác định số hiệu tỷ a,b sao cho : 3x^3+ax^2+bx+9 chia hết cho đa thức x^2-9
B) x^4+ax^33+bx-1 chia hết cho x^2-1
Bài 4:: a) Xác định k\(\inℤ\) để giá trị của biểu thức \(k^3+2x^2+15\)chia hết cho giá trị của biểu thức k+3
b) Với giá trị nào của a và b thì đa thức f(x)= \(x^4-3x^3+3x^2+ax+b\)chia hết cho đa thức g(x)=-3x-4
Tìm a,b sao cho:
a,Đa thức x^4-x^3+6x^2-x+a chia hết cho x^2-x+5
b,Đa thức 2x^3-3x^2+x+a chia hết cho x+2
c,Đa thức 3x^3+ax^2+bx+9 chia hết cho x+3 và x-3
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
bài 1
a) giải phương trình: y^2-2y+3=6/x^2+2x+4
b) tìm các số nguyên a và b để đa thức A(x)= x^4-3x^3+3x^2+ax+b chia hết cho đa thức B(x)=x^2-3x+4
Cho đa thức f(x)=x4+ax3+bx-1. Tìm a,b để đa thức f(x) chia hết cho x2-3x+2
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
Bài 2: Tìm a,b để :
a. Đa thức 3x^3 + 2x2 -7x + a chia hết cho đa thức 3x-1b. ax^2 + 5x^4 chia hết cho (x-1)^2c. Đa thức 2x^2 + ã +1 chia x-3 được d là 4d. 2x^3 - x^2 + ax + b chia hết cho x^2 -1Hộ aka: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
Bài 5: Tìm a, b để: x^4-3x^3+3x^2+ax+b chia hết cho x^2-3x+2
Bài 6: Tìm x thuộc Z để giá trị của biểu thức: x^3+2x-x^2+7 chia hết cho giá trị của biểu thức x^2+1
3x+7=28
3x =28-7
3x =21
x =21:3
x =7
1, Tìm các số a,b sao cho f(x)=x^4+ax^4+bx-1 chia hết cho đa thức x^2-3x+2
\(x^2-3x+2\)
\(=x^2-2x-x+2\)
\(=x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
Để \(f\left(x\right)=\left(x^4+ax^4+bx-1\right)⋮\left(x^2-3x+2\right)\)thì :
\(f\left(x\right)=\left(x^4+ax^4+bx-1\right)=\left(x^2-3x+2\right)\cdot Q\)
\(\Leftrightarrow x^4+ax^4+bx-1=\left(x-2\right)\left(x-1\right)\cdot Q\)
Vì đẳng thức trên đúng với mọi x, do đó :
+) Đặt x = 2 ta có pt :
\(2^4+a\cdot2^4+b\cdot2-1=\left(2-2\right)\left(2-1\right)\cdot Q\)
\(\Leftrightarrow16a+2b+15=0\)
\(\Leftrightarrow16a+2b=-15\)(1)
+) Đặt x = 1 ta có pt :
\(1^4+a\cdot1^4+b\cdot1-1=\left(1-2\right)\left(1-1\right)\cdot Q\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\)(2)
Thay (2) vào (1) ta có :
\(16\cdot\left(-b\right)+2b=-15\)
\(\Leftrightarrow-14b=-15\)
\(\Leftrightarrow b=\frac{15}{14}\)
\(\Rightarrow a=\frac{-15}{14}\)
Vậy....
a. Tìm a để x4+2x3+10x+a chia hết cho đa thức x2+5
b. Tìm a,b để đa thức x4-3x3+3x2+ax+b chia hết cho đa thức x2-3x+4
Giúp !!!
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)