cho p nguyên tố, p>3. Hỏi p2 + 2012 là số nguyên tố hay hợp số?
Cho P là số nguyên tố > 3. Hỏi P2 + 2012là số nguyên tố hay hợp số?
Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$.
TH1: $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
$p^2+2012=(3k+1)^2+2012=9k^2+6k+2013=3(3k^2+2k+671)\vdots 3$
TH2: $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
$p^2+2012=(3k+2)^2+2012=9k^2+12k+2016=3(3k^2+4k+672)\vdots 3$
Vậy $p^2+2012$ luôn chia hết cho $3$. Mà $p^2+2012>3$ nên là hợp số.
a) Cho n là số nguyên tố không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3. Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
cho p là số nguyên tố lớn hơn 3.hỏi p^2 + 2012 là số nguyên tố hay hợp số
p là số nguyên tố nhỏ hơn 3 => p = 2
Thay vào p = 2
Ta có 2^2 +2012
= 4 + 2012
= 2016
mà 2016 là hợp số
Vậy p^2 + 2012 là hợp số
p là số nguyên tố nhỏ hơn 3 =>p=2
=>2^2+2012=4+2012=2016 là hợp số
p nguyeentoos nhỏ hơn 3 thì p=2
p^2 =2^2=4
4+2012=2018
VẬY P^2+2018 LÀ HƠP SỐ
TICK NHA
Cho n là số nguyên tố lớn hơn 3.Hỏi n mũ 2 +2012 là số nguyên tố hay hợp số
n là số nguyên tố lớn hơn 3 => n không chia hết cho 3 => n2 chia 3 dư 1
Mà 2012 chia 3 dư 2 => n2 + 2012 chia 3 dư 3 hay chia hết cho 3
Hiển nhiên nó cũng lớn hơn 3 nên là hợp số
Cho n là số nguyên tố > 3 hỏi n2 + 2012 là hợp số hay số nguyên tố ?
cho p là số nguyên tố nhỏ hơn 3.hỏi p^2 +2012 là hợp số hay số nguyên tố
cho P là số nguyên to lớn hơn 3.Hỏi P2+2011 là số nguyên tố hay hợp số, Vì sao?
cho A=2012 . p2+2013 . p3+2014 ( p là số nguyên tố).Hỏi p là số nguyên tố hay hợp số ?