Tìm x,y,z thuộc N sao để \(x^3+y^3=z^3\)và \(x+y+z\)là số nguyên tố
Tìm số nguyên tố x,y,z sao cho x^3+y^3+z^3=x+y+z+2017
Từ :
\(x^3+y^3+z^3=x+y+z+2017\) \(\implies\) \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)
Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)
\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)
\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)
Vì x, y, z là các số nguyên nên
\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3
Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3
Vậy không có số nguyên x,y,z nào thỏa mãn ycbt
Cho nguyên tố X thuộc chu kì 3 , nhóm IA , nguyên tố Y số e ở phân lớp P là 2 , Nguyên tố Z thuộc nhóm VIA có tổng số hạt cơ bản (p,e,n) là 24
a. Xác định nguyên tố X Y Z
b. viết phương trình tạo thành Ion từ X,Y,Z
c.Giải thích sự tạo thành liên kết giữa X và Z
a/ntố X ở chu kì 3 \(\Rightarrow\)có 3 lớp e.nhóm IA \(\Rightarrow\)CHe kết thúc ở 3s\(^1\)\(\Rightarrow\)CHe là .\(\Rightarrow\) z=......
ntố Y có số e phân lớp P là 2\(\Rightarrow\) CHe kết thúc ở 2p\(^2\) \(\Rightarrow\) CHe là .....
ntố Z có 2Z+N=24.áp dụng công thức Z\(\le\) N\(\le\) 1,5Z.công vào mỗi vế 2Z đẻ có 2z+n=24\(\Rightarrow\) z=.....(có vài trường hợp bạn tự loại nha)
b/ từ phần a là tự suy ra đc mà!GOOD LUCK!
1.cho n là hợp số. CM: 2n - 1 là hợp số
2. Cho p và p2 + 2 là các số nguyên tố. CMR: p3 + p2 + 1 là số nguyên tố
3. Tìm x;y;z thuộc N* tm: \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là hữu tỉ và x2 + y2 + z2 nguyên tố
ta có \(2^n\)\(⋮\)2
=>\(2^n-1⋮1\)
=>\(2^n-1\)là hợp số
\(p^3+p^2+1\)
=\(p^2+2+p^3-1\)
=
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm 3 số nguyên tố x,y,z đồng thời thỏa mãn x - y , y - z , x - z là các số nguyên tố.
Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này
Tìm x,y,z\(\in\)N tỏa mãn x3+y3=2z3 và x+y+z là số nguyên tố
tìm các số nguyên tố x,y,z sao cho :x^5 +y^3-(x+y)^2=3*z^3
Ta có:
\(x\) và \(x^5\) có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu \(x\) lẻ thì \(x^5\) lẻ, còn nếu \(x\) chẵn thì \(x^5\) cũng chẵn luôn)
\(y\) và \(y^3\) có cùng tính chẵn - lẻ
\(\left(x+y\right)\) và \(\left(x+y\right)^2\) có cùng tính chẵn - lẻ
Vậy \(x^5+y^3-\left(x+y\right)^2\) và \(x+y-\left(x+y\right)\) có cùng tính chẵn - lẻ
Trong mọi trường hợp, dù \(x\) và \(y\) lẻ hay chẵn thì kết quả luôn là số chẵn\(\Rightarrow3z^3\) là số chẵn\(\Rightarrow z\) phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất\(\Rightarrow z=2\)
\(\Rightarrow x^5+y^3-\left(x+y\right)^2=3\cdot2^3=24\)
Chỉ khi \(x=y=2\) thì phương trình trên mới hợp lí.
Vậy \(x=y=2\)
Đáp số: \(x=y=z=2\)
Tìm 3 số nguyên tố liên tiếp x; y; z(x<y<z) sao cho số A = x2+y2+z2 là một số nguyên tố.
(có lời giải)
1. Cho p>3 và p là số nguyên tố. CMR:(p-1).(p+1) chia hết cho 24.
2. Cho x, y, z thuộc Z và (x-y).(y-z).(z-x)=x+y+z
CMR: (x+y+z)chia hết cho 27
Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2)
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24