\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
tại x=2019
F(x)=x^2019-2020x^2018+2020x^2017-2020x^2016+...+2020x-2020 tại x= 2019
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
tại x=2019
tìm giá trị của \(x\): \(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\) tại \(x=2019\)
Cho f(x)= x^99-2020x^98+2020x^97+..............-2020x^2 + 2020-1 .Tính F(2019)?
Cho x=2019
Tính A= x6-2020x5+2020x4-2020x3+2020x2-2020x+2020
2020.2019^5 = (2019+1).2019^5 = 2019^6+2019^5 làm tương tự với các x còn lại
A= 2019^6 - 2019^6 +.....-2019^2-2019 +2020 = 1 vậy A=1
ta có x = 2019 \(\Rightarrow\)2020 = x+1
thay 2020 = x+1 vào A ta có
\(A=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...-\left(x+1\right).x+2020\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2020\)
\(=-x+2020\)
\(=-2019+2020\)
\(=1\)
vậy A = 1
học tốt !!!
f(x) = x^6 -2020x^5+2020x^4-2020x^3+2020x^2-2020x+2020
Tính f(2019)
f(x) = \(\left(x^6-2019x^5\right)-\left(x^5-2019x^4\right)+\left(x^4-2019x^3\right)-\left(x^3-2019x^2\right)+\left(x^2-2019x\right)-\left(x-2019\right)+1\)
= \(x^5\left(x-2019\right)-x^4\left(x-2019\right)+x^3\left(x-2019\right)-x^2\left(x-2019\right)+x\left(x-2019\right)-\left(x-2019\right)+1\)
Thay x = 2019 vào f(x), ta có:
f(2019) = 0 + 0 + 0 + 0 + 0 +0 + 1 = 1
Cho f(x)=x^100-2020x^99+2020x^98-...+2020x^2-2020x+2000
Tính f(2019)
\(f\left(2019\right)=x^{100}-\left(2019+1\right)x^{99}+\left(2019+1\right)x^{98}-....+\left(2019+1\right)x^2-\left(2019+1\right)x+2000\)
\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-...+\left(x+1\right)x^2-\left(x+1\right)x+2000\)
\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-...+x^3+x^2-x^2-x+2000\)
\(=-x+2000=-2019+2000\)
\(=-19\)
Biết 2019z-2020y/2018=2020x-2018z/2019=2018y-2019x/2010. Chứng minh 2018/x=2019/y=2020/z
f(x)=x^99-2020x^98 + 2020x^97-2020x^96+........._2020x^2+2020x-1
Tính f(2019)
Bài làm:
Ta có: \(x=2019\Rightarrow2020=x+1\)
Thay vào ta được:
\(f\left(2019\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(f\left(2019\right)=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...-x^3-x^2+x^2+x-1\)
\(f\left(2019\right)=x-1\)
Thay \(x=2019\)vào ta được:
\(f\left(2019\right)=2019-1=2018\)
Vậy f(2019) = 2018
\(f\left(x\right)=x^{99}-2020x^{98}+2020x^{97}-2020x^{96}+...-2020x^2+2020x-1\)
\(f\left(2019\right)=2019^{99}-2020.2019^{98}+2020.2019^{97}-...+2020.2019-1\)
Xét \(2020.2019^{98}=2019^{99}+2019^{98};2020.2019^{97}=2019^{98}+2019^{97}\)
\(2020.2019^{96}=2019^{97}+2019^{96};...;2020.2019=2019^2+2019\)
\(\Rightarrow f\left(2019\right)=2019^{99}-2019^{99}-2019^{98}+2019^{97}-2019^{97}-...+2019^2+2019-1\)
\(\Rightarrow f\left(2019\right)=2019-1=2018\). Vậy \(f\left(2019\right)=2018\)