Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Hằng
Xem chi tiết
Trương Minh Tiến
11 tháng 11 2017 lúc 20:04

Ta có A=5+5^2+5^3+...+5^2007

=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2005+5^2006+5^2007)

=31x5+31x5^4+...+31x5^2005

=31x(5+5^4+...+5^2005) chia hết cho 31

Vậy A chia hết cho 31

Không Tên
11 tháng 11 2017 lúc 20:05

A = 5 + 52 + 53 + .....+ 52007

    = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) +.........+ (52005 + 52006 + 52007 )

    = 5( 1 + 5 + 52 ) + 54( 1 + 5 + 52 ) +.........+ 52005( 1 + 5 + 52 )

    = 31( 5 + 54 + .....+ 52005 )\(⋮\)31

Vậy A \(⋮\)31

Phan Thị Ngọc Tú
Xem chi tiết
đề bài khó wá
17 tháng 9 2017 lúc 6:32

a/A= \(5^6-10^4=5^4.\left(5^2-2^4\right)=5^4.\left(25-16\right)=5^4.9\)chia hết cho 9

b/\(F=5+5^2+5^3+5^4+5^5+5^6=\left(5+5^2+5^3\right).\left(5^4+5^5+5^6\right)=\left(5+25+125\right)\left(5^4+5^5+5^6\right)=155.\left(5^4+5^5+5^6\right)\)

vì 155 chia hết cho 31 đa thức F chia hết cho 31

Mật khẩu trên 6 kí tự
Xem chi tiết
Trần Đặng Phan Vũ
28 tháng 1 2018 lúc 21:16

a) \(5+5^2+5^3+....+5^{100}\)

đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )

\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+....+5^{99}.6\)

\(A=6\left(5+5^3+....+5^{99}\right)\)

vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)

b) \(2+2^2+2^3+....+2^{100}\)

đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )

\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )

\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(B=2.31+....+2^{96}.31\)

\(B=31\left(2+...+2^{96}\right)\)

vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)

nguyen tien dung
28 tháng 1 2018 lúc 20:59

a) 5+5^2+5^3..+5^100

=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)

=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)

=5.6+5^3.6+.....+5^99.6

=6.(5+5^3+.....+5^99):6

nguyen tien dung
28 tháng 1 2018 lúc 21:00

cau b tuong tu nhe ban

vũ khánh huyền
Xem chi tiết
Nguyễn Khánh Ly
18 tháng 10 2015 lúc 8:58

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng 

Ta có 

A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^96+5^97+5^98)

=> A=31+5^3(1+5+5^2)+...+5^96(1+5+5^2)

=> A=31+5^3.31+...+5^96.31

=> A=31(1+5^3+..+5^96) CHIA HẾT CHO 31 (tick né)

Kỳ Tỉ
Xem chi tiết
Phan Thanh Phú
19 tháng 12 2015 lúc 17:23

a)A=2+2^2+2^3+...+2^60 chia hết cho 15

=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)

=>2.15+...+2^57.15

Vì 15 chia hết choo 15

=>a chia hết cho 15

b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31

=>(1+5+5^2)+...+5^56.(1+5+5^2)

=>31+....+5^56.3vi2 31 chia hết cho 31

=>B chia hết cho 31

 

Cua nhỏ
19 tháng 12 2015 lúc 17:18

Ta có : 
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3) 
A=(2+2^5+...+2^57)*15 chia het cho 15 

Dương Helena
19 tháng 12 2015 lúc 17:20

Ai tick mình đi cho tròn 20 điểm

Trần Bảo Hân
Xem chi tiết
Nguyễn Đức Trí
8 tháng 8 2023 lúc 10:09

b) \(A=1+5+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\left(1+5^1+5^2\right)+5^3\left(1+5^1+5^2\right)+...+5^{69}\left(1+5^1+5^2\right)\)

\(\Rightarrow A=31+5^3.31+...+5^{69}.31\)

\(\Rightarrow A=31\left(1+5^3+...+5^{69}\right)⋮31\left(dpcm\right)\)

Nguyễn Đức Trí
8 tháng 8 2023 lúc 10:04

a) \(A=1+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\dfrac{5^{71+1}-1}{5-1}=\dfrac{5^{72}-1}{4}\)

\(4A+x=5^{72}\)

\(\Rightarrow4.\dfrac{5^{72}-1}{4}+x=5^{72}\)

\(\Rightarrow5^{72}-1+x=5^{72}\)

\(\Rightarrow x=1\)

Lê Thị Khánh Linh
Xem chi tiết
Nguyệt
12 tháng 8 2018 lúc 20:29

A=(1+5+5^2)+(5^3+5^4+5^5)+.....+(5^77+5^78+5^79)

A=31+5^3.(1+5+5^2)+.....+5^77.(1+5+5^2)

A=31+5^3.31+....+5^77.31

A=31.(1+5^3+.....+5^77) chia hết cho 31

Phan Nguyen Tuong Vi
Xem chi tiết
ngân Phạm
Xem chi tiết