Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cá Mực
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
6 tháng 11 2019 lúc 21:11

Ta có: 3n+5⋮n+1.

(3n+3)+2⋮n+1.

3(n+1)+2⋮n+1.

mà 3(n+1)⋮n+1

⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.

Ta lập bảng xét giá trị 

n+1-11-22
n-20-31
Khách vãng lai đã xóa
Hương trần 2k8
6 tháng 11 2019 lúc 21:43

Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)                                                                                                                                                                         

TC : 3n-5 -[3.(n+1)]:hết cho n+1

3n-5 -(3n+3) :hết cho n+1

3n- 5 -  3n-3:hết cho n+1

2:hết cho n+1  =≫n+1 thuôc Ư(2)={1;2}

thay n+1lần lượt= 1;2 là ban sẽ ra

Khách vãng lai đã xóa
Hồ Thị Oanh
Xem chi tiết
Akai Haruma
17 tháng 12 2023 lúc 0:00

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

Girl Lạnh Lùng
Xem chi tiết
Napkin ( Fire Smoke Team...
6 tháng 3 2020 lúc 13:54

\(3n+1⋮11-n\)

\(=>3n+1⋮-\left(n-11\right)\)

\(=>3n-33+34⋮n-11\)

\(=>34⋮n-11\)

\(=>n-11\inƯ\left(34\right)\)

Nên ta có bảng sau :

Tự lập bảng nhé bạn :P

Khách vãng lai đã xóa
nguyenhaanh
Xem chi tiết
Incursion_03
16 tháng 12 2018 lúc 7:03

\(3n+5⋮n+1\)

\(\Leftrightarrow3\left(n+1\right)+2⋮n+1\)

\(\Leftrightarrow2⋮n+1\)

Vì n là stn => n + 1 > 1

Ta có bảng :

n + 1                  1                    2                   
n01

Vậy \(n\in\left\{0;1\right\}\)

Nguyễn Ngọc Minh
Xem chi tiết
Nguyễn Ngọc Minh
21 tháng 11 2021 lúc 19:55

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

Khách vãng lai đã xóa
Trần Thị Khánh Linh
Xem chi tiết

câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html

Khách vãng lai đã xóa

câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html

Khách vãng lai đã xóa
nguyễn anh thư
15 tháng 11 2019 lúc 20:51

a,

3.(n-1)+4:n-1

Vì n+3:n-1=>4:n-1

(n-1)thuộc Ư(4){1,2,4}

n-1=1=>2n=2

vậy n=1

n-1=2=>3n=3=>n-2

n-1=4=>5n=5=>n-4

Khách vãng lai đã xóa
Phạm Quỳnh Hương
Xem chi tiết
Phạm Phương Quỳnh
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 22:08

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

Thuốc Hồi Trinh
14 tháng 7 2023 lúc 21:41

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

Nguyễn Phương Anh
Xem chi tiết
Đào Ngọc Mai
28 tháng 10 2020 lúc 22:05

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

Khách vãng lai đã xóa
Đào Ngọc Mai
28 tháng 10 2020 lúc 22:14

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)

Khách vãng lai đã xóa
Đào Ngọc Mai
28 tháng 10 2020 lúc 22:30

c) \(\left(3n-5\right)⋮\left(n+1\right)\Leftrightarrow\frac{3n-5}{n+1}\) là số tự nhiên
Có \(\frac{3n-5}{n+1}=\frac{3n+3-3-5}{n+1}=\frac{3\left(n+1\right)-8}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{-8}{n+1}=3+\frac{-8}{n+1}\)
Vì 3 là số tự nhiên nên:
Để \(\frac{3n-5}{n+1}\)là số tự nhiên thì \(\frac{-8}{n+1}\)phải là số tự nhiên.
Để \(\frac{-8}{n+1}\)là số tự nhiên thì \(\left(-8\right)⋮\left(n+1\right)\)
                                           hay: \(\left(n+1\right)\inƯ\left(-8\right)\)
Có \(Ư\left(-8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow\left(n+1\right)\in\left\{1;2;4;8\right\}\)
Ta có bảng:

\(n+1\)\(1\)\(2\)\(4\)\(8\)
\(n\)\(0\)\(1\)\(3\)\(7\)


Vậy \(n\in\left\{0;1;3;7\right\}\)


 

Khách vãng lai đã xóa