Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hồng Ánh
Xem chi tiết
bùi huyền trang
Xem chi tiết
chintcamctadungnennoitrc...
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 9 2021 lúc 10:23

a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)

b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)

c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)

 

Trần Thị Hòa Bình
Xem chi tiết
Võ anh ngọc trâm
Xem chi tiết
nguyễn mai thùy trâm
Xem chi tiết
Manh
Xem chi tiết
KAl(SO4)2·12H2O
7 tháng 8 2019 lúc 8:46

B = (x + 2)3 + (x - 2)3 - 2x(2x2 + 12)

B = (x + 2)(x2 + 2x.2 + 22) + (x - 2)(x2 - 2x.2 + 22) - 2x(2x3 + 12)

B = x3 + 4x3 + 4x + 2x2 + 8x + 8 + x3 - 4x2 + 4x - 2x2 + 8x - 8 - 4x3 - 24x

B = -2x3

lon HEO
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 7 2017 lúc 19:37

Ta có : x2 - x + 1 

=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy giá trị của biểu thức luôn luôn dương với mọi x 

l҉o҉n҉g҉ d҉z҉
3 tháng 7 2017 lúc 19:34

Ta có : x2 - 8x + 17 

= x2 - 2.x.4 + 16 + 1

= (x - 4)2 + 1 

Mà (x - 4)2 \(\ge0\forall x\)

Nên : (x - 4)2 + 1 \(\ge1\forall x\)

Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)

Vậy giá trị của biểu thức luôn luôn dương với mọi x 

Nhàn Hạ
Xem chi tiết
Akai Haruma
29 tháng 7 2021 lúc 19:30

Lời giải:

a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$

$2x=10$

$x=5$

$\Rightarrow y=x=5$

Vậy $(x,y)=(5,5)$

b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$

$5x=180$

$x=36$

$y=x=36$

Vậy $(x,y)=(36,36)$

c. Thay $y=2x$ vào điều kiện đầu thì:

$3x+5.2x=13$

$13x=13$

$x=1$

$y=2x=2$

Vậy $(x,y)=(1,2)$

 

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 23:09

a) Ta có: x=y

mà x+y=10

nên \(x=y=\dfrac{10}{2}=5\)

b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)