Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức An
Xem chi tiết
Nguyễn Huy Tú
14 tháng 6 2021 lúc 19:38

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
14 tháng 6 2021 lúc 19:41

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )

Khách vãng lai đã xóa
huong
Xem chi tiết
🍀 ♑슈퍼 귀여운 염소 자...
26 tháng 6 2021 lúc 10:21

image

chúc bn hok tốt k mk nha

Khách vãng lai đã xóa
Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2023 lúc 22:59

loading...

loading...

Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2023 lúc 22:58

a: ΔABD vuông tại A

=>\(BD^2=AB^2+AD^2\)

=>\(BD^2=9^2+12^2=225\)

=>BD=15(cm)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot15=12\cdot9=108\)

=>AH=108/15=7,2(cm)

XétΔABD vuông tại A có \(sinBDA=\dfrac{AB}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)

nên \(\widehat{BDA}\simeq37^0\)

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=HD\cdot HB\)

c: Xét ΔHDN vuông tại H và ΔHMB vuông tại H có

\(\widehat{HDN}=\widehat{HMB}\left(=90^0-\widehat{DBC}\right)\)

Do đó: ΔHDN đồng dạng với ΔHMB

=>HD/HM=HN/HB

=>\(HM\cdot HN=HD\cdot HB=HA^2\)

ngọc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:57

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH^2=HB\cdot HD\left(1\right)\)

Ta có: \(\widehat{HDN}=\widehat{HBA}\)

\(\widehat{HMB}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)

Do đó: \(\widehat{HDN}=\widehat{HMB}\)

Xét ΔHDN vuông tại H và ΔHMB vuông tại H có

\(\widehat{HDN}=\widehat{HMB}\)

Do đó: ΔHDN\(\sim\)ΔHMB

Suy ra: \(\dfrac{HD}{HM}=\dfrac{HN}{HB}\)

hay \(HD\cdot HB=HM\cdot HN\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(HA^2=HM\cdot HN\)

Phạm thị thảo
Xem chi tiết
Nguyễn Thị Thái Linh
Xem chi tiết
Dương Lệ Thủy
20 tháng 10 2021 lúc 16:48

a) theo đinh lí Py ta go ta có: BD2 = AB2 + AD2  = 6 + 82 => BD = 10

có SABC = 1/2 AD. AB = 1/2 8.6= 24

=> SABC = 1/2 AH. DB => AH = SABC *10 * 1/2 = 4.8

Do mình tính nhẩm nên có sai sót chỗ đáp số nào đó bạn thông cảm cho mình nha

Khách vãng lai đã xóa
Nguyễn Thị Thái Linh
20 tháng 10 2021 lúc 15:56

Trả lời giúp mình với mk cần gấp !!!!

Khách vãng lai đã xóa
Đinh Thành Phát
20 tháng 10 2021 lúc 16:00
Cần con cặc
Khách vãng lai đã xóa
Kii
Xem chi tiết
Trâm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 9 2021 lúc 0:37

b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM

nên \(AH\cdot AM=AD^2\left(1\right)\)

Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB

nên \(DH\cdot DB=AD^2\left(2\right)\)

Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)