Cho tam giác ABC vuông tại A, đường cao AH. Gọi (O; R), \(\left(O_1;R_1\right)\) , \(\left(O_2;R_2\right)\) theo thứ tự là các đường tròn nội tiếp các tam giác ABC, tam giác ABH và tam giác ACH. C/minh: \(R_1+R_2+R=AH\) .
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn (I) đường kính BH cắt AB tại M. Đường tròn (K) đường kính HC cắt AC tại N. Gọi O là giao điểm của AH và MN.Tìm điều kiện tam giác ABC để MN coa độ dài lớn nhất
Cho tam giác ABC vuông tại A, AH là đường cao, BD là đường phân giác, gọi O là giao điểm của AH và BD
CM : HO/OA = AD/DC
Aps dụng tích chất đường phân giác trong tam giác ABC ta có :
\(\frac{ad}{dc}=\frac{ab}{bc}\)( T/C đường phân giác )
Aps dụng tính chất đường phân giác trong tam giác ABH ta có :
\(\frac{oh}{oa}=\frac{ab}{ac}\) ( tích chất đường phân giác )
từ hai điều trên suy ra : \(\frac{ho}{ao}=\frac{ad}{dc}\)
Cho tam giác ABC vuông tại A (AB >AC )đường tròn tâm O đường kính AB cắt BC tại H. Gọi K là trung điểm của AC a,Chứng minh AH là đường cao của tam giác ABC b, Chứng minh tam giác KOH = tam giác KAO . Suy ra số đo KHI
a: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
=>ΔAHB vuông tại H
=>AH vuông góc BC
b: ΔHAC vuông tại H nên ΔAHC nội tiếp đường tròn đường kính AC
=>KA=KH=KC
Xét ΔKAO và ΔKHO có
KA=KH
AO=HO
KO chung
=>ΔKAO=ΔKHO
=>góc KHO=góc KAO=90 độ
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
cho tam giác abc vuông tại a đường cao ah , biết ab=15cm , ac=20cm a) cm tam giác hba đồng dạng tam giác abc . tam giác hac đồng dạng tam giác abc . b)tính ah,bh,ch . c) gọi bd là tia phân giác của góc abc . tính ad,dc . d)gọi e,f là chân đường vuông góc kẻ từ h xuống ad và ac . tứ giác aehf là hình gì . e)chứng minh ae.ab=af.ac
Vẽ dùm mình cái hình và phần e
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: AD=7,5cm; CD=12,5cm
1.Cho tam giác ABC vuông tại A. Gọi H là chân đường cao hạ từ A. Biết rằng AB = 7cm, AC = 9cm. Tính BH, CH, AH.
2. Cho tam giác ABC vuông tại A, đường cao AH. BH = 4cm, CH=9cm. Tính AH,AB,AC?
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
cho tam giác vuông ABC vuông tại A , đường cao AH . Hạ HI vuông góc AB, HK vuông góc AC. Gọi M là trung điểm BH , N là trung điểm CH.
a) chứng minh AIHK là hình chữ nhật
b)AH cắt IK tại O. Chứng minh tam giác MIO = tam giác MHO
c) chứng minh tứ giác MNIK là hình thang vuông
cần gấp, cảm ơn các bn
Cho tam giác ABC cắt vuông tại A ( AB<AC) , đường cao AH. Gọi EF lần lượt là hình chiếu vuông của H trên AB ; AC;AH cắt EF tại O . đường thẳng qua O vuông góc với EF cắt EH tại S,R là điểm đối xứng của S qua O
a. CM AEHF là hình chữ nhật
b. gọi M là trung điểm của BC , CS cắt AB tại , RS cắt AB tại I , CM BT= 2AI
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
b: CS cắt AB ở đâu vậy bạn?