Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiệt Nguyễn
Xem chi tiết
Phạm Thị Quỳnh Anh
Xem chi tiết
Phạm Thị Quỳnh Anh
4 tháng 11 2019 lúc 12:40

Băng Băng 2k6 ; Akai Haruma ; ... giúp với

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
fffffffffffff
4 tháng 11 2019 lúc 13:01

RA TROG PHẠM VI THOI BN EI 

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
4 tháng 11 2019 lúc 17:21

t lm bừa , nx t lm roài thì cấm gáy :)

\(sina=\frac{1}{5}\)

\(a=arcsin\left(\frac{1}{5}\right)\)

\(arcsin\left(\frac{1}{5}\right)\Leftrightarrow a=0,20135792\)

\(a=\left(3,14159265\right)-0,20135795\)

\(a=2,94023473\)

Chu kì đc sử dụng bằng cách : \(\frac{2n}{|b|}\)

Thay thế b với 1 trong công thức cho chu kì ta đc: \(\frac{2n}{|1|}\)

Chu kỳ của hàm sin(a) là 2n nên các giá trị sẽ lặp lại sau mỗi 2n radian theo cả hai hướng.

a=0,20135792+2n,2,94023473+2n, cho mọi số nguyên n

Khách vãng lai đã xóa
Best_ Suarez phiên bản l...
4 tháng 11 2019 lúc 18:52

Trúng phóc, làm sai trầm trọng, dell bt cái cc gì hết mà lên mặt vs tao

Khách vãng lai đã xóa
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Trần Hoàng
16 tháng 8 2019 lúc 21:04

b) khai triển hằng đẳng thức là ra

a) nhân tích chéo

Bui Huyen
16 tháng 8 2019 lúc 21:59

\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)

\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)

Trà Nguyen
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2019 lúc 23:58

Giả sử các biểu thức đều xác định

a/ \(\frac{1-sina}{cosa}=\frac{cosa\left(1-sina\right)}{cos^2a}=\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{cosa\left(1-sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa}{1+sina}\)

b/ \(=\frac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}=\frac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\frac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\frac{2}{sina}\)

c/ \(=\frac{cosa\left(1-sina\right)+cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{2cosa}{1-sin^2a}=\frac{2cosa}{cos^2a}=\frac{2}{cosa}\)

Khách vãng lai đã xóa
Trà Nguyen
23 tháng 11 2019 lúc 23:46

Chứng minh các hằng đẳng thức trên

Khách vãng lai đã xóa
린 린
Xem chi tiết
린 린
18 tháng 1 2019 lúc 21:59

\(\frac{150}{x-1}-\frac{140}{x}=5\)

Văn Vân Anh
Xem chi tiết
Akai Haruma
1 tháng 8 2019 lúc 0:18

Lời giải:

1.

\(\cos ^2x+\cos ^2x\tan ^2x=\cos ^2x+\cos ^2x.(\frac{\sin x}{\cos x})^2\)

\(=\cos ^2x+\sin ^2x=1\)

2.

\(\frac{2\cos ^2a-1}{\sin a+\cos a}=\frac{2\cos ^2a-(\sin ^2a+\cos ^2a)}{\sin a+\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a+\cos a}=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a+\cos a}\)

\(=\cos a-\sin a\)

3.

\(\frac{1-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a+\sin ^2a-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a-\cos a}\)

\(=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a-\cos a}=-(\cos a+\sin a)\)

4.

\(\frac{1+\sin a}{1-\sin a}-\frac{1-\sin a}{1+\sin a}=\frac{(1+\sin a)^2-(1-\sin a)^2}{(1-\sin a)(1+\sin a)}\)

\(=\frac{1+\sin ^2a+2\sin a-(1+\sin ^2a-2\sin a)}{1-\sin ^2a}=\frac{4\sin a}{\cos ^2a}=\frac{4\tan a}{\cos a}\)

Phan Bá Quân
Xem chi tiết
Nguyễn Linh Chi
21 tháng 2 2020 lúc 20:11

Đk: x, y khác 0

Đặt: \(\frac{1}{x}=u;\frac{1}{y}=v\) 

ta có hệ phương trình:

\(\hept{\begin{cases}u-v=1\\2u+4v=5\end{cases}}\)Giải u; v sau đó tìm x, y.

Khách vãng lai đã xóa
Lê Hồng Ngọc
Xem chi tiết