x^2+2x+25y^2-16y+3>0 với mọi x,y
1,chứng tỏ
a,x mũ2 -x+1>0 với mọi x
b,25x mũ2 +10x+2>0 với mọi x
c,3x mũ2+2x+14>0 với mọi x
d,2x mũ2+y mũ2+ 2xy- 2x+2>0 với mọi x
2,tìm giá trị nhỏ nhất của
A=3x mũ2-3x
B=4x mũ 2+4x+3
C=x mũ2+5x-2
D=2x mũ2+6x+7
E=x mũ2+y mũ2-x+6y+10
mk ko viết đc dấu mũ,thông cảm nha,giúp mk vs,hii
1,chứng tỏ
a,x mũ2 -x+1>0 với mọi x
b,25x mũ2 +10x+2>0 với mọi x
c,3x mũ2+2x+14>0 với mọi x
d,2x mũ2+y mũ2+ 2xy- 2x+2>0 với mọi x
2,tìm giá trị nhỏ nhất của
A=3x mũ2-3x
B=4x mũ 2+4x+3
C=x mũ2+5x-2
D=2x mũ2+6x+7
E=x mũ2+y mũ2-x+6y+10
mk ko viết đc dấu mũ,thông cảm nha,giúp mk vs,hii
Bài 1:
a) \(x^2-x+1\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0;\forall x\)
b) \(25x^2+10x+2\)
\(=25x^2+10x+1+1\)
\(=\left(5x+1\right)^2+1\ge1>0;\forall x\)
c) \(3x^2+2x+14\)
\(=3x^2+2x+\dfrac{1}{3}+\dfrac{41}{3}\)
\(=\left(\sqrt{3}x+\dfrac{\sqrt{3}}{3}\right)^2+\dfrac{41}{3}\ge\dfrac{41}{3}>0;\forall x\)
d) \(2x^2+y^2-2xy-2x+2\)
\(=x^2+y^2-2xy-2x+x^2+1+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+1\ge1>0;\forall x\)
Vậy ...
a) x2 + x + 1 > 0 với mọi x.
b) -4x2 - 4x - 2 < 0 với mọi x.
c) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 với mọi x,y,z.
x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x
a) x2 + x + 1
= (x2 + x) + 1
=x(x+1) +1
=(x + 1)(x+1)
=(x+1)2 >0
b1 : cm cac bđt sau thỏa mãn x y
b)x^2-5y^2+2x-4xy-10y+14>0
a) x^2-xy+y^2+1>0
b2: chứng minh rằng
a)x^2 +x+1>0>0 với mọi x
b)x^2-xy+y^2>0 với mọi x,y ko đồng thời= 0
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
chứng minh rằng
a) x^2 + 2xy + y^2 +1 > 0 với mọi x
b) x^2 - x + 1 > 0 với mọi số thực x
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Tìm a,b,c biết
a, (ax2 +bx+c)(x+3)=x3+2x2-3x với mọi x
b, (y2-y+1)(ay2+by+c)=2y4-y3+2y2+1 với mọi y
chứng minh :
A = x(x - 6) +10 luôn luôn dương với mọi x
B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x,y
Giải:
a) Ta có:
\(A=x\left(x-6\right)+10\)
\(\Leftrightarrow A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-6x+9+1\)
\(\Leftrightarrow A=\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0;\forall x\)
\(\left(x-3\right)^2+1\ge1;\forall x\)
Hay \(A\ge1;\forall x\)
\(\Leftrightarrow A>0;\forall x\)
Vậy A luôn luôn nhận giá trị dương với mọi x.
b) Ta có:
\(B=x^2-2x+9y^2-6y+3\)
\(B=x^2-2x+9y^2-6y+1+1+1\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\forall x\) và \(\left(3y-1\right)^2\ge0;\forall y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0;\forall x,y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1;\forall x,y\)
Hay \(B\ge1;\forall x,y\)
\(\Leftrightarrow B>0;\forall x,y\)
Vậy B luôn luôn nhận giá trị dương với mọi x, y.
A = x(x - 6) + 10
= x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x2 - 6x + 9) + 1
= (x - 3)2 + 1
Vì (x - 3)2 \(\ge\) 0 với mọi x
=> (x - 3)2 + 1 > 0 với mọi x
Vậy A = = x(x - 6) + 10 luôn dương với mọi x
B = x2 - 2x + 9y2 - 6y + 3
= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1
= (x - 1)2 + (3y - 1)2 +1
Vì (x - 1)2 \(\ge\) 0 với mọi x
(3y - 1)2 \(\ge\) 0 với mọi y
=> (x - 1)2 + (3y - 1)2 \(\ge\) 0 với mọi x, y
=> (x - 1)2 + (3y - 1)2 +1 > 0 với mọi x, y
Vậy B = x2 - 2x + 9y2 - 6y + 3 luôn dương với mọi x, y
Chúc bạn học tốt!
1) Khôi phục:
a) ...........+6xy+..........=(..........+3y)^2
b)............-.............+9y^2=(2x-.............)^2
c)...........-10xy+25y^2=(..........-...........)^2
d)9x^2+............+16y^2=(..........+..............)^2
e)27x^3+.............+...........+..........=(.............+2y)^3
f)x^3-6x^2y+..........-..........=(............-...........)^3
g)...............+12x^2y+.............+.............=(2x+...........)^3
h)8x^3-.............+................-y^3=(............-..............)^3
a) x2+6xy+9y2=(x+3y)^2
b)4x2-12xy+9y^2=(2x-3y)^2
c)x2-10xy+25y^2=(x-5y)^2
d)9x^2+24xy+16y^2=(3x+4y)^2
e)27x^3+54x2y+36xy2+8y3=(3x+2y)^3
f)x^3-6x^2y+12xy2-8y3=(x-2y)^3
g)8x3+12x^2y+6xy2+y3=(2x+y)^3
h)8x^3-12x2y+6xy2-y^3=(2x-y)^3
xác định k để BDT : \(25x^2+25y^2+kxy-x-y+\frac{1}{100}\ge0\) (1) được thoả mãn với mọi cặp số (x;y) là toạ độ của điểm M nằm trên mỗi đường thẳng y=x và y=-x
bạn ấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
thay x=y;y=-x vô được khoảng của k rồi biện luận
Nguyễn Tuấn cậu làm ra lun đi mà 1 phần y=x thôi