Cho tứ giác ABCD có 2 đường chéo cắt nhau tại O biết \(\widehat{AOD}\)\(=70^o\)và AC = 5,3 cm, BD = 4cm. Tính \(S_{ABCD}\)
Cho tứ giác ABCD có 2 đường chéo cắt nhau tại O . Cho biết \(\widehat{AOD}=70\)độ , AC = 5,3 cm , BD = 4 cm . Tính diện tích tứ giác ABCD (làm tròn kết quả đến 1 chữ số thập phân).
Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.
Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)
Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)
Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP
Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700
Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)
Kết luận: ...
Cho mik sửa tí: SABCD = SMNP = 1/2.MN.NP.Sin^MNP = 1/2.4.5,3.Sin700 \(\approx\)10,0 (cm2)
Vậy SABCD \(\approx\)10,0 cm2.
Tứ giác ABCD có 2 đường chéo cắt nhau ở O. Biết góc AOD = 70 độ; AC = 5,3cm; BD = 4cm. Tính S của ABCD.
cho tứ giác abcd có hai đường chéo cắt nhau tại o.biết AOD góc bằng 70 độ ; AC=5,3 m; BD=4,0 m. tính diện tích tứ giác abcd (biết sin70 độ = 0,9)
Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.
Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)
Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)
Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP
Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700
Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)
Kết luận: ...
Tứ giác ABCD có các đường chéo cắt nhau tại O. Biết AC = 4 cm; BD = 5 cm; góc AOD= 50o . Tính diện tích tứ giác ABCD.
cho tứ giác abcd có hai đường cắt nhau tại o.biết AOD góc bằng 70 độ ; AC=5,3 m; BD=4,0 m. tính diện tích tứ giác abcd (biết sin70 độ = 0,9)
Tứ giác ABCD có các đường chéo cắt nhau tại O. Cho biết AC=4cm, BD = 5cm, A O B ^ = 60 0 . Tính diện tích tứ giác ABCD
Tứ giác ABCD có các đường chéo cắt nhau tại O.Biết AC=4cm,BD=5cm,\(\widehat{AOB=50^o}\)
Tính diện tích tứ giác ABCD
cho hình thang ABCD CÓ ĐÁY BÉ AB =4cm đáy lớn CD = 6 cm hai dường chéo AC và BD cắt nhau tại O biết diện tích tam giác AOD=9 cm2 tính diện tích hình thang ABCD
1) Cho tứ giác ABCD có AC cắt BD tại O . Biết OA = 3cm, OB = 4cm , AB =5cm , OC =2OA ; OD=2OB .
Khi đó CD bằng: A.) 5cm. B.) 10cm . C.) 15cm . D.) 20cm .
2) Cho tứ giác ABCD . Hai đường chéo AC và BD cắt nhau tại O . Gọi E là điểm trong của tam giác OCD . Số tứ giác (tứ giác lồi và tứ giác không lồi) nhận 4 trong 5 điểm A, B , .., D , E làm đỉnh là:
A) 3
B) 6
C) 9
D) 12