CMR: bình phương của một số bất kì khi chia cho 3 dư 0 hoặc 1
CM:1 số chính phương khi chia cho 4 chỉ có số dư là 0 hoặc 1
b, CMR:Tổng bình phương của 2 số tự nhiên lẻ bất kì không là số chính phương
a,Gọi a là một số nguyên bất kỳ => a có dạng 2k hoặc 2k+1 (k\(\in\)Z)
Xét a = 2k=>\(a^2\)=\(\left(2k\right)^2\)=\(4k^2\)=>\(a^2\) chia 4 dư 0
Xét a= 2k+1=>\(a^2\)=\(\left(2k+1\right)^2\)=\(4k^2\)\(+\)\(4k+1\)=>\(a^2\) chia 4 dư 1
Vậy số chính phương khi chí cho 4 dư 0 hoặc 1.
BÀI 1
CMR: MỘT SỐ CHÍNH PHƯƠNG HOẶC LÀ CHIA HẾT CHO 3 HOẶC LÀ CHIA 3 DƯ 1
BÀI 2
CMR: MỘT SỐ CHÍNH PHƯƠNG KHI CHIA CHO 4 CÓ SỐ DƯ KO THỂ NÀO LÀ 2 HOẶC 3.
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
CMR: khi chia 1 số nguyên tố bất kì cho 30 thì được số dư là 1 hoặc là số nguyên tố
Giả sử A là 1 số nguyên tố ,A=30.k+r (k,r \(\in\) N,0 >=r<30)
nếu r chia hết cho 2,3 và 5 thì A cũng chia hết cho 2,3 và 5 nên A=2,3 và 5(thoả mãn)
nếu r ko chia hết cho 2,3 và 5 :giả sử r là hợp số thì r=r1.r2 (r1,r2>1)
vì r ko chia hết cho 2,3 và 5 nên r1 và r2 cũng ko chia hết cho 2,3 và 5=>r1,r2>=7
=>r=r1.r2>=7.7=49(vô lý)
vậy r ko phải là hợp số nên r=1 hoặc r là số nguyên tố
bạn lưu ý là >= là lớn hơn hoặc bằng nhá
(tick nha)
CMR số chính phương khi chia cho 3 dư 0 hoặc 1
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
1 2 : 3 thì dư 1
2 2 : 3 thì dư 1
3 2 : 3 thì dư 0
4 2 : 3 thì dư 1
CMR: 1 số chính phương khi chia cho 3 dư 0 hoặc 1 nhưng ko dư 2
CMR một số chính phương khi chia cho 4 dư 0 hoặc 1
Gọi 1 số chính phương bất kì là \(a^2\)
TH 1 : \(a=2k\left(k\in Z\right)\)
\(\Rightarrow a^2=\left(2k\right)^2=4k^2\) chia hết cho 4
TH 2 : \(a=2k+1\left(k\in Z\right)\)
\(\Rightarrow a^2=\left(2k+1\right)^2=4k^2+4k+1\) chia 4 dư 1
CMR một số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1
1 số tự nhiên sẽ có dạng 2k hoặc 2k+1
xét trường hợp 2k ta có 2k\(^2\)=4k\(^2\) chia hết cho 4
2k+1 ta có (2k+1)\(^2\) =4k\(^2\)+4k+1 chia 4 dư 1
Cmr 1 số chính phương khi chia cho 8 thì dư 0 hoặc 1 hoặc 4
CMR bình phương của một số nguyên tố khác 2 và khác 3 khi chia cho 12 đều dư 1