\(\sqrt{\frac{25}{81}}\) - \(1\frac{5}{9}\)+ (-1)2015 + 4\(\sqrt{\frac{1}{4}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\sqrt{\frac{25}{81}}\) - 1\(\frac{5}{9}\) + (-1)2015 + 4\(\sqrt{\frac{1}{4}}\)
\(\sqrt{\frac{25}{81}}-1\frac{5}{9}+\left(-1\right)^{2015}+4\sqrt{\frac{1}{4}}\)
\(=\frac{5}{9}-\frac{6}{9}-1+2\)
\(=\frac{-1}{9}+1\)
\(=\frac{8}{9}\)
\(\sqrt{\frac{25}{81}}\)-1\(\frac{5}{9}\)+ (-1)2015 + 4\(\sqrt{\frac{1}{4}}\)
\(\sqrt{\frac{25}{81}}-1\frac{5}{9}+\left(-1\right)^{2015}+4\sqrt{\frac{1}{4}}\)
\(=\frac{5}{9}-\frac{14}{9}-1+4.\frac{1}{2}\)
\(=\frac{5}{9}-\frac{14}{9}-1+2\)
\(=-1+1\)
\(=0\)
Tính
a) \(2\sqrt{\frac{25}{16}}-3\sqrt{\frac{49}{36}}+4\sqrt{\frac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\frac{1}{2}}\right)^2+\frac{1}{16}.\left(\sqrt{\frac{3}{4}}\right)^2\)
c) \(\frac{2}{3}\sqrt{\frac{81}{16}}-\frac{3}{4}\sqrt{\frac{64}{9}}+\frac{7}{5}.\sqrt{\frac{25}{196}}\)
a) = \(\frac{7}{2}\)
b) = \(\frac{643}{64}\)
c) = 0
Giải các phương trình sau
a) \(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
b)\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
a, ĐK :a >= 3
\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)
\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)
b, \(ĐK:x\ge-\frac{1}{2}\)
\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow x=4\left(tm\right)\)
a) đk: \(a\ge3\)
pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)
\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)
\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)
Bài 1 : Tính hợp lý
\(\sqrt{0,36}:\sqrt{\frac{25}{16}}+\frac{1}{4}+\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-\sqrt{\frac{1}{16}}\)
= 0,6 : 5/4 + 1/4 + 2/9 : 5/9 - 1/4
= 3/5 . 4/5 + 2/9 . 9/5
= 12/25 + 2/5
= 22/25
A = \(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
B = \(\sqrt{4+36+81}\)
C = \(\sqrt{1^{3^{ }}+}2^3\)
E = \(\left(\sqrt{\frac{1}{9}+\sqrt{\frac{25}{36}-\sqrt{\frac{49}{81}}:}\sqrt{\frac{441}{324}}}\right)\)
F = \(-4.\sqrt{\frac{1}{16}+3.\sqrt{\frac{1}{9}}-}5.\sqrt{0,04}\)
Mg các bạn giúp mik ạ
Cảm ơn ạ
\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(\sqrt{4+36+81}\)
\(=\sqrt{121}\)
\(=\pm11\)
\(\sqrt{1^3}+2^3\)
\(=\sqrt{1}+8\)
\(=1+8\)
\(=9\)
a)\(\sqrt{\frac{4}{81}}\): \(\sqrt{\frac{25}{81}}\)- 1\(\frac{2}{5}\)
b) \(\sqrt{36}\). \(\sqrt{\frac{25}{16}}\)+ \(\frac{1}{4}\)
c) 1\(\frac{1}{2}\)+ \(\frac{4}{7}\): \(\frac{-8}{9}\)
d) 1,17 - 0,4.\(\frac{1}{2}\)^2 -\(\frac{1}{-5}\)
a) \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)
\(=\frac{2}{5}-\frac{7}{5}\)
\(=-1.\)
b) \(\sqrt{36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)
\(=6.\frac{5}{4}+\frac{1}{4}\)
\(=\frac{15}{2}+\frac{1}{4}\)
\(=\frac{31}{4}.\)
c) \(1\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\left(-\frac{9}{14}\right)\)
\(=\frac{6}{7}.\)
d) \(1,17-0,4.\left(\frac{1}{2}\right)^2-\frac{1}{-5}\)
\(=\frac{117}{100}-\frac{2}{5}.\frac{1}{4}-\left(-\frac{1}{5}\right)\)
\(=\frac{117}{100}-\frac{1}{10}+\frac{1}{5}\)
\(=\frac{107}{100}+\frac{1}{5}\)
\(=\frac{127}{100}.\)
Chúc bạn học tốt!
a, \(\frac{4}{81}:\sqrt{\frac{25}{81}-1\frac{2}{5}}\)
\(\Rightarrow\frac{4}{81}:\frac{5}{9}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{81}.\frac{9}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{9}.\frac{1}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{-59}{45}\)
b,\(\sqrt{36}.\sqrt{\frac{25}{16}+\frac{1}{4}}\)
\(\Rightarrow6.\frac{5}{4}+\frac{1}{4}\)
\(\Rightarrow\frac{15}{2}+\frac{1}{4}\)
\(\Rightarrow\frac{31}{4}\)
c,\(1\frac{1}{2}+\frac{4}{7}:\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{4}{7}.\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{9}{14}\)
\(\Rightarrow\frac{6}{7}\)
d, \(1,17-\left(0,4.\frac{1}{2}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\left(\frac{1}{5}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\frac{1}{25}-\frac{1}{5}\)
\(\Rightarrow\frac{93}{100}\)
\(\sqrt{\frac{25}{4}}+\left(\sqrt{\frac{1}{2}}\right)^2:\left(\frac{-\sqrt{9}}{4}\right).\sqrt{\frac{16}{81}}-4^2-\left(-2\right)^3\)
\(\sqrt{\frac{25}{4}}+\left(\sqrt{\frac{1}{2}}\right)^2:\left(\frac{-\sqrt{9}}{4}\right).\sqrt{\frac{16}{81}}-4^2-\left(-2\right)^3\)
\(=\frac{5}{2}+\frac{1}{2}:\frac{-3}{4}.\frac{4}{9}-16+8\)
\(=\frac{5}{2}-\frac{8}{27}-8\)
\(=\frac{-313}{54}\)
-9/25 nghĩa là (âm chín phần hai mươi năm ) nha bạn
\(\sqrt{\frac{4}{9}}:\sqrt{\frac{25}{81}}-\left|-1\frac{7}{8}\right|\)
=2/3:5/9-15/8
=2/3*9/5-15/8
=6/5-15/8
=-27/40
hok tot
\(\sqrt{\frac{4}{9}}:\sqrt{\frac{25}{81}}-|-1\frac{7}{8}|\)
\(=\frac{2}{3}:\frac{5}{9}-1\frac{7}{8}\)
\(=\frac{2}{3}\times\frac{9}{5}-\frac{15}{8}\)
\(=\frac{6}{5}-\frac{15}{8}\)
\(=\frac{27}{40}\)
\(\sqrt{\frac{4}{9}}:\sqrt{\frac{25}{81}}-\left|-1\frac{7}{8}\right|\)
\(=\frac{2}{3}:\frac{5}{9}-\left|\frac{-15}{8}\right|\)
\(=\frac{2}{3}\cdot\frac{9}{5}-\frac{15}{8}\)
\(=\frac{6}{5}-\frac{15}{8}\)
\(=\frac{3}{40}\)