Bài 1: Tập hợp Q các số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thuy Linh Nguyen

a)\(\sqrt{\frac{4}{81}}\): \(\sqrt{\frac{25}{81}}\)- 1\(\frac{2}{5}\)

b) \(\sqrt{36}\). \(\sqrt{\frac{25}{16}}\)+ \(\frac{1}{4}\)

c) 1\(\frac{1}{2}\)+ \(\frac{4}{7}\): \(\frac{-8}{9}\)

d) 1,17 - 0,4.\(\frac{1}{2}\)^2 -\(\frac{1}{-5}\)

Vũ Minh Tuấn
4 tháng 8 2019 lúc 20:31

a) \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)

\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)

\(=\frac{2}{5}-\frac{7}{5}\)

\(=-1.\)

b) \(\sqrt{36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)

\(=6.\frac{5}{4}+\frac{1}{4}\)

\(=\frac{15}{2}+\frac{1}{4}\)

\(=\frac{31}{4}.\)

c) \(1\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)

\(=\frac{3}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)

\(=\frac{3}{2}+\left(-\frac{9}{14}\right)\)

\(=\frac{6}{7}.\)

d) \(1,17-0,4.\left(\frac{1}{2}\right)^2-\frac{1}{-5}\)

\(=\frac{117}{100}-\frac{2}{5}.\frac{1}{4}-\left(-\frac{1}{5}\right)\)

\(=\frac{117}{100}-\frac{1}{10}+\frac{1}{5}\)

\(=\frac{107}{100}+\frac{1}{5}\)

\(=\frac{127}{100}.\)

Chúc bạn học tốt!

B.Thị Anh Thơ
4 tháng 8 2019 lúc 19:59

a, \(\frac{4}{81}:\sqrt{\frac{25}{81}-1\frac{2}{5}}\)

\(\Rightarrow\frac{4}{81}:\frac{5}{9}-\frac{7}{5}\)

\(\Rightarrow\frac{4}{81}.\frac{9}{5}-\frac{7}{5}\)

\(\Rightarrow\frac{4}{9}.\frac{1}{5}-\frac{7}{5}\)

\(\Rightarrow\frac{-59}{45}\)

b,\(\sqrt{36}.\sqrt{\frac{25}{16}+\frac{1}{4}}\)

\(\Rightarrow6.\frac{5}{4}+\frac{1}{4}\)

\(\Rightarrow\frac{15}{2}+\frac{1}{4}\)

\(\Rightarrow\frac{31}{4}\)

c,\(1\frac{1}{2}+\frac{4}{7}:\frac{-8}{9}\)

\(\Rightarrow\frac{3}{2}-\frac{4}{7}.\frac{-8}{9}\)

\(\Rightarrow\frac{3}{2}-\frac{9}{14}\)

\(\Rightarrow\frac{6}{7}\)

d, \(1,17-\left(0,4.\frac{1}{2}\right)^2-\frac{1}{5}\)

\(\Rightarrow\frac{117}{100}-\left(\frac{1}{5}\right)^2-\frac{1}{5}\)

\(\Rightarrow\frac{117}{100}-\frac{1}{25}-\frac{1}{5}\)

\(\Rightarrow\frac{93}{100}\)


Các câu hỏi tương tự
Thuy Linh Nguyen
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Lê thị huỳnh
Xem chi tiết
Lê Thúy Hường
Xem chi tiết
Vũ Bảo Duy
Xem chi tiết
Lê Lê
Xem chi tiết
nguyen nga
Xem chi tiết
Nguyễn Lê Khôi Nguyên
Xem chi tiết