Cho x + y = 1. Tìm GTLN hoặc GTNN của P = xy - 7
a, tìm GTLN A= x(5-3x)
b, cho x+y=7. tìm GTLN xy
c, tìm GTNN của F= x(x-3)(x-4)(x-7)
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )
c) F = x( x - 3 )( x - 4 )( x - 7 )
= [ x( x - 7 ) ][ ( x - 3 )( x - 4 ) ]
= ( x2 - 7x )( x2 - 7x + 12 )
Đặt t = x2 - 7x
F = t( t + 12 ) = t2 + 12t = ( t2 + 12t + 36 ) - 36 = ( t + 6 )2 - 36
= ( x2 - 7x + 6 )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra khi x2 - 7x + 6 = 0 <=> x = 1 hoặc x = 6
Vậy MinF = -36 <=> x = 1 hoặc x = 6
cho x^2-xy+y^2 =<1 tìm gtnn,gtln của 2x^2+xy-y^2
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
1,cho x+y+4=0
tìm GTLN của A= 2(x3+y3)+3(x2+y2)+10xy
2,cho x4+y4-7=xy(3-2xy)
tìm GTNN của :M=xy
Tìm GTNN hoặc GTLN của biểu thức
\(2x+1y+2\sqrt{xy}-4\sqrt{x}-3\sqrt{y}+4\)
x ^{ 2 } +y ^{ 2 } +xy-3x-3y+2018
tìm gtnn hoặc gtln của đa thức
\(A=x^2+y^2+xy-3x-3y+2-18\)
\(=\left(x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}\right)+\dfrac{3}{4}\left(y^2-2y+1\right)+2015\)\(=\left(x+\dfrac{y}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+2015\ge2015\)
\(A_{min}=2015\) khi \(\left(x;y\right)=\left(1;1\right)\)
Cho các số thực dương thỏa mãn điều kiện:
x2+ y2+ z2< hoặc = 27
Tìm GTLN và GTNN của biểu thức:
x+ y+ z+ xy+ yz+ zx
Tìm GTLN hoặc GTNN của các đa thức sau
B=-x^2 + 2xy - 4y^2 +2x +10y -9
D=2(x+y) +xy -x^2 - y^2
Cho x+y=4. Timf GTNN hoặc GTLN của biểu thức:
\(A= xy+ {5x \over2} + {3y \over2}\)