Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng thu phương
Xem chi tiết
Trần Thùy Trang
23 tháng 3 2016 lúc 19:14

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

Tôi không biết
1 tháng 4 2017 lúc 21:01

Thùy Trang giỏi quá!!!

Erza Scarlet
24 tháng 1 2018 lúc 11:47

coppy sách chứ gì

Nguyễn Thị Phương Thảo
Xem chi tiết
Minh Nguyễn Cao
23 tháng 2 2019 lúc 17:28

Ta thấy 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)

=> A là số dương 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99 

b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)

Ta sẽ có:

B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)

=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)

Bạn CMTT như câu a là cũng ra

Chúc bạn học tốt

Nguyễn Thị Phương Thảo
25 tháng 2 2019 lúc 22:05

Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2021 lúc 20:46

Bài 1: 

Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)

\(=\dfrac{11}{27}\)

Ngoc Anh Thai
24 tháng 3 2021 lúc 22:13

Câu 2: 

B=1+1/2+1/3+....+1/2010

 =(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)

 = 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006

 =2011.(1/2010+.....1/1005.1006)

Vậy B có tử số chia hết cho 2011 (đpcm).

Câu 3:

 \(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)

 \(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)

Lê Nguyễn Trà My
Xem chi tiết
Mới vô
17 tháng 7 2017 lúc 18:44

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)

Vậy \(B< 1\)

 Mashiro Shiina
17 tháng 7 2017 lúc 20:58

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)

\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)

\(\rightarrow B< 1\rightarrowđpcm\)

Trân Nguyễn
Xem chi tiết
nguyễn thị na
Xem chi tiết
Trần Tuấn Minh
Xem chi tiết
Đức Minh Nguyễn
Xem chi tiết
Nguyễn Quang Đức
4 tháng 3 2018 lúc 16:48

Ta có\(M=\left[\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\right].2.3...98\)

\(=\left[\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\right].2.3...98=99\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).2.3...98\)

\(=99\left(\frac{k_1+k_2+...+k_{49}}{1.2.3...98}\right).2.3...98\left(k_1,k_2...k_{49}\varepsilonℕ^∗\right)=99\left(k_1+k_2+...+k_{49}\right)⋮99\Rightarrow M⋮99\left(đpcm\right)\)

Trân Nguyễn
Xem chi tiết