Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mật khẩu trên 6 kí tự
Xem chi tiết
Trần Đặng Phan Vũ
28 tháng 1 2018 lúc 21:16

a) \(5+5^2+5^3+....+5^{100}\)

đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )

\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+....+5^{99}.6\)

\(A=6\left(5+5^3+....+5^{99}\right)\)

vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)

b) \(2+2^2+2^3+....+2^{100}\)

đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )

\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )

\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(B=2.31+....+2^{96}.31\)

\(B=31\left(2+...+2^{96}\right)\)

vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)

nguyen tien dung
28 tháng 1 2018 lúc 20:59

a) 5+5^2+5^3..+5^100

=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)

=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)

=5.6+5^3.6+.....+5^99.6

=6.(5+5^3+.....+5^99):6

nguyen tien dung
28 tháng 1 2018 lúc 21:00

cau b tuong tu nhe ban

Đức Nhật Huỳnh
Xem chi tiết
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Nguyễn Thị Bích Thảo
Xem chi tiết
Ko Quan Tâm
13 tháng 2 2016 lúc 15:16

ủng hộ mình lên 360 điểm nha các bạn

Kỳ Tỉ
Xem chi tiết
Phan Thanh Phú
19 tháng 12 2015 lúc 17:23

a)A=2+2^2+2^3+...+2^60 chia hết cho 15

=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)

=>2.15+...+2^57.15

Vì 15 chia hết choo 15

=>a chia hết cho 15

b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31

=>(1+5+5^2)+...+5^56.(1+5+5^2)

=>31+....+5^56.3vi2 31 chia hết cho 31

=>B chia hết cho 31

 

Cua nhỏ
19 tháng 12 2015 lúc 17:18

Ta có : 
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3) 
A=(2+2^5+...+2^57)*15 chia het cho 15 

Dương Helena
19 tháng 12 2015 lúc 17:20

Ai tick mình đi cho tròn 20 điểm

LÊ HUY THẮNG
Xem chi tiết
Lê Khôi Nguyên
Xem chi tiết
Phạm Hương Linh
Xem chi tiết
Hồ việt hưng
Xem chi tiết
Lê Anh Thơ
Xem chi tiết
Lê Hải Hà
27 tháng 10 2019 lúc 16:50

ko biết

Khách vãng lai đã xóa