cho 3 so thuc duong a, b, c thoa man 1/a+1/c=2/b. tim GTNN cua (a+b)/(2a-b)+(b+c)(/2c-b)
cho cac so duong a,b,c thoa man : ab+a+b=3
tim GTNN cua bieu thuc C=a^2+b^2
cho a,b,c la cac so thoa man (a+1)^2+(b+2)^2+(c+3)2<2010.tim GTNN cua bieu thuc A=ab+b(c-1)+c(a-2)
Cho 2 so thuc duong a,b thoa man a+b<=1.Tim GTNN cua
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\)
Cho a,b la cac so thuc duong thoa man a+b >=4 .
Tim GTNN cua P = \(\frac{2a^2+9}{a}+\frac{3b^2+2}{b}\)
Cho a,b,c la cac so duong thoa man a+b+c=9.Tim gia tri nho nhat cua bieu thuc:
\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
cho 3 so duong a;b;c thoa man a+b+c=1.tim GTNN cua:
\(p=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
cho a,b,c la cac so thuc duong thoa man a+b+c=3. tim gia tri nho nhat cua
P=\(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\)
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
cho a , b, c la cac so thuc duong thoa man he thuc a+b+c=6abc
Chung minh rang \(\dfrac{bc}{a^3\left(c+2b\right)}+\dfrac{ac}{b^3\left(a+2c\right)}+\dfrac{ab}{c^3\left(b+2a\right)}\ge2\)
Cho a,b,c la cac so nguyen duong thoa man a+b+c=3 Tim gia tri nho nhat cua bieu thuc sau
a2/b+c + b2/c+a + c2/a+b
Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)