Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Bùi Nhật Linh
Xem chi tiết
Cố gắng hơn nữa
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
T.Ps
27 tháng 7 2019 lúc 20:08

#)Giải :

Áp dụng BĐT Cauchy : \(\hept{\begin{cases}\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\\\frac{b}{1+c^2}=b-\frac{bc^2}{1+c^2}\ge b-\frac{bc}{2}\\\frac{c}{1+a^2}=c-\frac{ca^2}{1+a^2}\ge c-\frac{ca}{2}\end{cases}}\)

\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=\frac{3}{2}\)

\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(đpcm\right)\)

Lê Hồ Trọng Tín
27 tháng 7 2019 lúc 20:12

Theo BĐT AM-GM:

 \(\frac{a}{1+b^2}\)=a-\(\frac{ab^2}{1+b^2}\)\(\ge\)a-\(\frac{ab^2}{2b}\)=a-\(\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\)\(\ge\)b-\(\frac{bc}{2}\);\(\frac{c}{1+a^2}\)\(\ge\)c-\(\frac{ca}{2}\)

Suy ra \(\frac{a}{1+b^2}\)+\(\frac{b}{1+c^2}\)+\(\frac{c}{1+a^2}\)\(\ge\)a+b+c-\(\frac{1}{2}\)(ab+bc+ca)

Mặt khác thì theo BĐT AM-GM:9=a2+b2+c2+2(ab+bc+ca)

=\(\frac{a^2+b^2}{2}\)+\(\frac{b^2+c^2}{2}\)+\(\frac{c^2+a^2}{2}\)+2(ab+bc+ca)\(\ge\)3(ab+bc+ca)

\(\Rightarrow\)\(\frac{1}{2}\)(ab+bc+ca)\(\le\)\(\frac{3}{2}\)

Cho nên  \(\frac{a}{1+b^2}\)+\(\frac{b}{1+c^2}\)+\(\frac{c}{1+a^2}\)\(\ge\)a+b+c-\(\frac{3}{2}\)=3-\(\frac{3}{2}\)=\(\frac{3}{2}\)

KHANH QUYNH MAI PHAM
Xem chi tiết
Mất nick đau lòng con qu...
2 tháng 7 2019 lúc 12:06

\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

Mất nick đau lòng con qu...
2 tháng 7 2019 lúc 12:12

sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v 

\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)

tương tự 2 cái kia cộng lại t có bđt cần cm 

Ngọc Nguyễn
3 tháng 7 2019 lúc 8:39

\(\frac{a}{b+c}+\frac{b}{a+c}+\)\(\frac{c}{a+b}\ge\frac{3}{2}\)

Đặt b + c = x

      a + c = y

     a + b = z

Có: x + y - z = b + c + a + c - a - b = 2c

  \(\frac{x+y-z}{2}=c\)

Tương tự: \(\frac{x+z-y}{2}=b\)

     \(\frac{z+y-x}{2}=a\)

Khi đó:  = \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}\)\(+\frac{x+y-z}{2z}\)

\(\frac{z+y}{2x}-\frac{x}{2x}\)\(+\frac{x+z}{2y}-\frac{y}{2y}+\)\(\frac{x+y}{2z}-\frac{z}{2z}\)

 = \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}\)\(+\frac{x+y}{2z}-\frac{1}{2}\)

 = \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)\(-\frac{3}{2}\)

 = \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)\(-\frac{3}{2}\)

 = \(\frac{1}{2}.\)\(\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)\(-\frac{3}{2}\)

Ta có : \(\frac{z}{x}+\frac{x}{z}\ge2\)

            \(\frac{y}{x}+\frac{x}{y}\ge2\)

            \(\frac{y}{z}+\frac{z}{y}\ge2\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)

     \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) ( đpcm )

Quyết Tâm Chiến Thắng
Xem chi tiết
Lê Hồ Trọng Tín
7 tháng 9 2019 lúc 20:48

Mình dùng ''AM-GM ngược dấu'' như sau

Áp dụng bất đẳng thức AM-GM ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự với các phân thức khác rồi cộng vế theo vế ta được:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)=3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)\)

Mặt khác áp dụng bất đẳng thức AM-GM  \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{3}{2}\)

Vậy \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Quyết Tâm Chiến Thắng
7 tháng 9 2019 lúc 21:34

bạn ơi đoạn cuối áp dụng BĐT AM-GN  mk chưa hiểu lắm

Lê Hồ Trọng Tín
8 tháng 9 2019 lúc 7:00

À mình dùng như thế này nhá \(a^2+b^2+c^2\ge ab+bc+ca\left(1\right)\)

Bạn có thể chứng minh bằng tách đối xứng như sau

\(VT\left(1\right)=\left(\frac{a^2}{2}+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}+\frac{c^2}{2}\right)+\left(\frac{c^2}{2}+\frac{a^2}{2}\right)\ge2\sqrt{\frac{a^2b^2}{4}}+2\sqrt{\frac{b^2c^2}{4}}+2\sqrt{\frac{c^2a^2}{4}}\)

\(=ab+bc+ca\)

Còn cách khác thì chứng minh tương đương

Bất đẳng thức(1) tương đương với \(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Bất đẳng thức này hiển nhiên đúng nên suy ra (1) đúng

KHANH QUYNH MAI PHAM
Xem chi tiết
Girl
6 tháng 7 2019 lúc 12:10

Có đk j nữa chứ bạn ?

Ngọc Nguyễn
6 tháng 7 2019 lúc 20:05

\(\frac{3}{2}\le\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Đặt: b + c = x

      a + c = y

     a + b = z

Ta có: x + y - z = b + c + a + c - a - b = 2c

      \(\frac{x+y-z}{2}=c\)

Tương tự: \(\frac{x+z-y}{2}=b\)

      \(\frac{z+y-x}{2}=a\)

Khi  đó: VP \(\ge\) \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

  VP \(\ge\) \(\frac{z+y}{2x}-\frac{x}{2x}+\frac{x+z}{2y}-\frac{y}{2y}+\frac{x+y}{2z}-\frac{z}{2z}\)

VP \(\ge\) \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}+\frac{x+y}{2z}-\frac{1}{2}\)

VP \(\ge\)  \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}-\frac{3}{2}\)

VP \(\ge\) \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)-\frac{3}{2}\)

VP \(\ge\) \(\frac{1}{2}.\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)-\frac{3}{2}\)

Ta có: \(\frac{z}{x}+\frac{x}{z}\ge2\)

\(\Leftrightarrow\)\(\frac{z^2}{x\text{z}}+\frac{x^2}{x\text{z}}\ge\frac{2xz}{x\text{z}}\)

\(\Leftrightarrow\)\(x^2-2xz+z^2\ge0\)

\(\Leftrightarrow\)\(\left(x-z\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\) \(\frac{z}{x}+\frac{x}{z}\ge2\)

Tương tự:  \(\frac{y}{x}+\frac{x}{y}\ge2\)

   \(\frac{y}{z}+\frac{z}{y}\ge2\)

\(\Rightarrow\)VP\(\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)

      VP\(\ge\frac{3}{2}\) 

\(\Rightarrow\) \(\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

nguyen thu phuong
Xem chi tiết
Vũ Tri Hải
18 tháng 6 2017 lúc 9:19

giả sử a\(\le\)b \(\le\)c.

khi đó \(\frac{a}{b+c}\le\frac{b}{c+a}\le\frac{c}{a+b}\)

áp dụng BĐT Trê bư sép ta có:

\(\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le3\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)=3VT\)

lại có a2 + b2 + c2 \(\ge\) \(\frac{\left(a+b+c\right)^2}{3}\) nên:

3VT \(\ge\frac{\left(a+b+c\right)^2}{3}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

hay VT \(\ge\left(\frac{a+b+c}{3}\right)^2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\). đpcm

Quân Butterfly
Xem chi tiết
Quân Butterfly
5 tháng 12 2017 lúc 12:34

giúp mình cái nhé

Lê Tuấn Kiệt
5 tháng 12 2017 lúc 21:04

a=34;

Lê Nhật Khôi
5 tháng 12 2017 lúc 21:13

bạn sử dụng bất đẳng thức cauchy nha

lý canh hy
Xem chi tiết
Đen đủi mất cái nik
2 tháng 10 2018 lúc 19:35

Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

Ta có:

\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)

Tương tự ta có:

\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)

\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)

\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)

Dấu bằng xảy ra khi a=b=c=1

Đen đủi mất cái nik
2 tháng 10 2018 lúc 20:08

mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra

Lại Anh Nhật
9 tháng 3 2021 lúc 19:25
Khó quá đi ????????????????????????
Khách vãng lai đã xóa
giang nguyen
Xem chi tiết
Nguyễn Thiều Công Thành
10 tháng 9 2017 lúc 21:59

sửa lại

\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

\(=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)

áp dụng bđt cauchy ta có:

\(b^2+1\ge2b;c^2+1\ge2c;a^2+1\ge2a\)

\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2b}+c-\frac{ca^2}{2a}\)

\(=a+b+c-\frac{ab+bc+ca}{2}\)

áp dụng cauchy ta có:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(Q.E.D\right)\)

dấu bằng xảy ra khi a=b=c=1

Nguyễn Thiều Công Thành
10 tháng 9 2017 lúc 21:53

đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)

\(=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\le3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\left(\frac{ab+bc+ca}{2}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\left(Q.E.D\right)\)