1) Cho a,b,c là 3 số dương. CMR \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho a;b;c là 3 số dương. CMR:
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right)\)
Cho a,b,c là 3 số dương t/m: a+b+c=3
CMR:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
#)Giải :
Áp dụng BĐT Cauchy : \(\hept{\begin{cases}\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\\\frac{b}{1+c^2}=b-\frac{bc^2}{1+c^2}\ge b-\frac{bc}{2}\\\frac{c}{1+a^2}=c-\frac{ca^2}{1+a^2}\ge c-\frac{ca}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(đpcm\right)\)
Theo BĐT AM-GM:
\(\frac{a}{1+b^2}\)=a-\(\frac{ab^2}{1+b^2}\)\(\ge\)a-\(\frac{ab^2}{2b}\)=a-\(\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\)\(\ge\)b-\(\frac{bc}{2}\);\(\frac{c}{1+a^2}\)\(\ge\)c-\(\frac{ca}{2}\)
Suy ra \(\frac{a}{1+b^2}\)+\(\frac{b}{1+c^2}\)+\(\frac{c}{1+a^2}\)\(\ge\)a+b+c-\(\frac{1}{2}\)(ab+bc+ca)
Mặt khác thì theo BĐT AM-GM:9=a2+b2+c2+2(ab+bc+ca)
=\(\frac{a^2+b^2}{2}\)+\(\frac{b^2+c^2}{2}\)+\(\frac{c^2+a^2}{2}\)+2(ab+bc+ca)\(\ge\)3(ab+bc+ca)
\(\Rightarrow\)\(\frac{1}{2}\)(ab+bc+ca)\(\le\)\(\frac{3}{2}\)
Cho nên \(\frac{a}{1+b^2}\)+\(\frac{b}{1+c^2}\)+\(\frac{c}{1+a^2}\)\(\ge\)a+b+c-\(\frac{3}{2}\)=3-\(\frac{3}{2}\)=\(\frac{3}{2}\)
Cho 3 số dương a,b,c . CMR
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\le\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v
\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)
tương tự 2 cái kia cộng lại t có bđt cần cm
\(\frac{a}{b+c}+\frac{b}{a+c}+\)\(\frac{c}{a+b}\ge\frac{3}{2}\)
Đặt b + c = x
a + c = y
a + b = z
Có: x + y - z = b + c + a + c - a - b = 2c
\(\frac{x+y-z}{2}=c\)
Tương tự: \(\frac{x+z-y}{2}=b\)
\(\frac{z+y-x}{2}=a\)
Khi đó: = \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}\)\(+\frac{x+y-z}{2z}\)
= \(\frac{z+y}{2x}-\frac{x}{2x}\)\(+\frac{x+z}{2y}-\frac{y}{2y}+\)\(\frac{x+y}{2z}-\frac{z}{2z}\)
= \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}\)\(+\frac{x+y}{2z}-\frac{1}{2}\)
= \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)\(-\frac{3}{2}\)
= \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)\(-\frac{3}{2}\)
= \(\frac{1}{2}.\)\(\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)\(-\frac{3}{2}\)
Ta có : \(\frac{z}{x}+\frac{x}{z}\ge2\)
\(\frac{y}{x}+\frac{x}{y}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) ( đpcm )
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3
CMR \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Mình dùng ''AM-GM ngược dấu'' như sau
Áp dụng bất đẳng thức AM-GM ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự với các phân thức khác rồi cộng vế theo vế ta được:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)=3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)\)
Mặt khác áp dụng bất đẳng thức AM-GM \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\frac{3}{2}\)
Vậy \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\)
bạn ơi đoạn cuối áp dụng BĐT AM-GN mk chưa hiểu lắm
À mình dùng như thế này nhá \(a^2+b^2+c^2\ge ab+bc+ca\left(1\right)\)
Bạn có thể chứng minh bằng tách đối xứng như sau
\(VT\left(1\right)=\left(\frac{a^2}{2}+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}+\frac{c^2}{2}\right)+\left(\frac{c^2}{2}+\frac{a^2}{2}\right)\ge2\sqrt{\frac{a^2b^2}{4}}+2\sqrt{\frac{b^2c^2}{4}}+2\sqrt{\frac{c^2a^2}{4}}\)
\(=ab+bc+ca\)
Còn cách khác thì chứng minh tương đương
Bất đẳng thức(1) tương đương với \(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Bất đẳng thức này hiển nhiên đúng nên suy ra (1) đúng
Cho 3 số dương a,b,c. Cmr
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\le\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\frac{3}{2}\le\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Đặt: b + c = x
a + c = y
a + b = z
Ta có: x + y - z = b + c + a + c - a - b = 2c
\(\frac{x+y-z}{2}=c\)
Tương tự: \(\frac{x+z-y}{2}=b\)
\(\frac{z+y-x}{2}=a\)
Khi đó: VP \(\ge\) \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
VP \(\ge\) \(\frac{z+y}{2x}-\frac{x}{2x}+\frac{x+z}{2y}-\frac{y}{2y}+\frac{x+y}{2z}-\frac{z}{2z}\)
VP \(\ge\) \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}+\frac{x+y}{2z}-\frac{1}{2}\)
VP \(\ge\) \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}-\frac{3}{2}\)
VP \(\ge\) \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)-\frac{3}{2}\)
VP \(\ge\) \(\frac{1}{2}.\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)-\frac{3}{2}\)
Ta có: \(\frac{z}{x}+\frac{x}{z}\ge2\)
\(\Leftrightarrow\)\(\frac{z^2}{x\text{z}}+\frac{x^2}{x\text{z}}\ge\frac{2xz}{x\text{z}}\)
\(\Leftrightarrow\)\(x^2-2xz+z^2\ge0\)
\(\Leftrightarrow\)\(\left(x-z\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow\) \(\frac{z}{x}+\frac{x}{z}\ge2\)
Tương tự: \(\frac{y}{x}+\frac{x}{y}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\Rightarrow\)VP\(\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)
VP\(\ge\frac{3}{2}\)
\(\Rightarrow\) \(\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
cho a b c là ba số dương cmr
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(\frac{a+b+c}{3}\right)^2\)
giả sử a\(\le\)b \(\le\)c.
khi đó \(\frac{a}{b+c}\le\frac{b}{c+a}\le\frac{c}{a+b}\)
áp dụng BĐT Trê bư sép ta có:
\(\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le3\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)=3VT\)
lại có a2 + b2 + c2 \(\ge\) \(\frac{\left(a+b+c\right)^2}{3}\) nên:
3VT \(\ge\frac{\left(a+b+c\right)^2}{3}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
hay VT \(\ge\left(\frac{a+b+c}{3}\right)^2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\). đpcm
cho a,b,c là các số thực dương .CMR\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}>=\frac{a+b+c}{2}\)
cho a,b,c là 3 số thực dương thoả mãn: a+b+c=3>CMR
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\)
Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)
Tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)
\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)
\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)
Dấu bằng xảy ra khi a=b=c=1
mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra
cho 3 số dương a,b,c. biết a+b+c=3. Cmr
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
sửa lại
\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
\(=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
áp dụng bđt cauchy ta có:
\(b^2+1\ge2b;c^2+1\ge2c;a^2+1\ge2a\)
\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2b}+c-\frac{ca^2}{2a}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\)
áp dụng cauchy ta có:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(Q.E.D\right)\)
dấu bằng xảy ra khi a=b=c=1
đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
\(=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\le3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\left(\frac{ab+bc+ca}{2}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\left(Q.E.D\right)\)