Cho tam giác ABC cân tại A, có AM là đường trung tuyến, gọi I là trung điểm của AM, BI cắt AC tại K
Tìm tỉ số \(\frac{AK}{AC}\)
Cho tam giác ABC; AM là đường trung tuyến. Gọi I là trung điểm của AM. Tia BI cắt tại AC tại K. Biết AC = 9 cm thì độ dài AK là
Qua M kẻ đường thằng MN song song với IK cắt AC tại N
Dễ thấy MN là đường trung bình của tam giác BKC nên KN = NC (1)
Mặt khác, ta cũng chứng minh được IK là đường trung bình của tam giác AMN
=> AK = KN (2)
Từ (1) và (2) suy ra AK = KN = NC
Mà AC = AK + KN + NC = 3AK = 9 cm => AK = 3 cm
1/ Cho tam giác ABC vuông tại A có đường phân giác AD và đường trung tuyến BM vuông góc tại E. Gọi H là trung điểm AE. BE cắt AC tại K.
a) Cm: tam giác BDK vuông cân tại D
b) Cm : (AD/AC)2 = 2/9
2/ Cho tam giác ABC vuông cân tại có đường trung tuyến AM. Vẽ MH vuông AB ( H thuộc AB ). Từ A hạ AI vuông CH tại I. Gọi N là giao điểm IC và AM. BI cắt AC tại K.
a) Cm: BI vuông với IM tại I
b) Cm: AN.AB = IC.MK
cho tam giác ABC , vẽ trung tuyến AM , gọi I là trung điểm am , bi cắt ac tại k chứng minh AK = 1\2 KC
cho tam giác ABC , vẽ trung tuyến AM , gọi I là trung điểm am , bi cắt ac tại k chứng minh AK = 1\2 KC
qua C kẻ đường thẳng song song với BI cắt AM tại N. xét tam giác MNC có BI song song với NC nên MI/MN=BM/MC . Do đó MN=MI=AI nên AI/AN=1/3. Mà AI/AN=AK/AC ( IK song song với NC) suy ra AK/AC=1/3 => AK/KC=1/2
kẻ ME song song BK
ta có : MB = MC
suy ra ME là đường trung bình tam giác BKC
suy ra ME song song BK , EC = EK (1)
lại có ME SONG SONG IK , AI = IM
suy ra IK là đường trung bình tam giác AME
suy ra AK =KE (2)
từ (1) và (2) suy ra EC=EK=AK
suy ra AK = 1\2 KC
Tam giác ABC, AM là đường trung tuyến, IM là trung điểm của AM. BI cắt AC tại K. Biết AC=9cm. Tính AK
Cho tam giác ABC cân tại A có BC=6cm, AB=4cm
a) Tính độ dài AC
b) Kẻ trung tuyến AM của tam giác ABC, trên tia MA lấy điểm I sao cho MI=1cm. Đường thẳng BI cắt AC tại K. C/m K là trung điểm của AC
Áp dụng định lý hàm số COS ta có:
AC^2 = AB^2+AC^2 - 2AB.AC.cosB
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252
Vì BD là phân giác của góc B nên theo tính chất ta có:
AD/AC =AB/BC = 6/12 = 1/2
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
AD^2=AB^2+BD^2 - 2AB.BD.cosB
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2)
<=> BD^2 - 6BD + 8 =0
<=> BD = 4 hoặc BD =2
Vậy: BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC
DO VẬY BD = 8 cm
hoac vay
a) Cho tam giác ABC, M là trung điểm của BC, D trên AC sao cho CD = 2AD. AM cắt BD tại I. Chứng minh I là trung điểm của AM
b) Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm của AM, BI cắt AC tại D. Chứng minh AD = 1/2DC
Cho tam giác ABC;AM là đường trung tuyến. Gọi I là trung điểm của AM. Tia BI cắt AC tại K. Biết AC=9cm thì độ dài AK là cm.
Gọi MN là đường thẳng song song với IK ( N \(\in\) AC )
MN là đường trung bình của \(\Delta\) BKC
\(\Rightarrow\) KN = NC (1)
Mặt khác, ta cũng chứng minh được IK là đường trung bình của tam giác AMN
=> AK = KN (2)
Từ (1) và (2) suy ra: AK = KN = NC
Mà AC = AK + KN + NC = 3AK = 9 cm
\(\Rightarrow\)AK = 3 cm
giúp mình ;-; Cho tam giác ABC có đường trung tuyến AM. Gọi I là trung điểm AM. Kéo dài BI cắt AC tại E. Qua M kẻ đường thẳng song song với BI cắt AC tại F
Chứng minh rằng:
a/ AE = EF = FC.
b/ BI = 3.IE
a: Xét ΔBEC có
M là trung điểm của BC
MF//BE
Do đó: F là trung điểm của CE
Suy ra: FE=CF(1)
Xét ΔAMF có
I là trung điểm của AM
IE//MF
Do đó: E là trung điểm của AF
Suy ra: AE=EF(2)
Từ (1) và (2) suy ra AE=FE=CF