tìm stn x có 2 chữ số thỏa mãn căn a+b=x/a+b
Cho a, b là các số thực dương thỏa mãn a + b = 1. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + 1/a + 1/b
Giải phương trình căn(x-1) + căn (3-x) =x^2-4x+6
Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)
Cộng theo vế 2 BĐT trên có:
\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Bài 2: Áp dụng BĐT AM-GM ta có:
\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(\le2+\left(x-1\right)+\left(3-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:
\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)
Từ (1);(2) xảy ra khi
\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)
Vậy x=2 là nghiệm của pt
2. \(\sqrt{x-1}+\sqrt{3-x}=x^2-4x+6\)
Điều kiện : \(\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}\Leftrightarrow}1\le x\le3\left(1\right)\)
(Nháp nhé : dễ thấy phương trình có nghiệm \(x=2\) nên ta sẽ thêm bớt để có \(\left(x-2\right)\)là nhân tử chung )
\(\Leftrightarrow\sqrt{x-1}-1+\sqrt{3-x}-1=x^2-4x+4\)
nhân liên hợp có :
\(\Leftrightarrow\frac{\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1\right)}{\left(\sqrt{x-1}+1\right)}+\frac{\left(\sqrt{3-x}+1\right)\left(\sqrt{3-x}-1\right)}{\left(\sqrt{3-x}+1\right)}=\left(x-2\right)^2\)
\(\Leftrightarrow\frac{x-2}{\left(\sqrt{x-1}+1\right)}+\frac{-\left(x-2\right)}{\left(\sqrt{3-x}+1\right)}=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{1}{\left(\sqrt{x-1}+1\right)}-\frac{1}{\left(\sqrt{3-x}+1\right)}-\left(x-2\right)\right]=0\)
\(x-2=0\Leftrightarrow x=2\)vì \(\left(\sqrt{x-1}+1\right)>\left(\sqrt{3-x}+1\right)\Rightarrow\frac{1}{\left(\sqrt{x-1}+1\right)}-\frac{1}{\left(\sqrt{3-x}+1\right)}< 0\)nên \(\frac{1}{\left(\sqrt{x-1}+1\right)}-\frac{1}{\left(\sqrt{3-x}+1\right)}-\left(x-2\right)< 0\forall x\in\left\{1.3\right\}\)do đó phương trình vô nghiệmKết luận nghiệm nhéB1, Cho x, y>0 thỏa mãn x+y=4/3. Tìm gtnn của A=3/x+1/3y
B2, Cho x,y,z thỏa mãn x2 + 2y2 + 10z2= 2015. Tìm gtnn của K= 2xy - 8yz - 2zx
B3, Cho x>=3. Tìm gtnn của M=x + 1/x2
B4, Cho a,b,c >0 thỏa mãn a+b+c=3. Tìm gtln của S=căn (3a+bc) + căn (3b+ca) + căn (3c+ab)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
1.Cho S=3+32+33+...+3100.Tìm c/s tận cùng của S
2.Tìm các STN a,b,c thỏa mãn a+b+c=abc(abc là một số)
3.a)tìm 2 STN a,b biết:
BCNN(a,b)=300
ƯCLN(a,b)=15
B)Tìm x,y thuộc N biết:(x+1).(2y-5)=443
a) tìm số tự nhiên a có 2 chữ số nhỏ hơn 32 thỏa mãn 273 , 2271 , 1785 đều chia a dư 5
b) tìm STN có 3 chữ số , biết rằng khi chia số đó cho 8 thì dư 7 , chia cho 31 thì dư 15
Từ tập A={0,1,2,3,4,5,6},lập được bao nhiêu stn có 4 chữ số thỏa mãn:
a, Có 2 số chẵn và 2 sô lẻ khác nhau
b,Khác nhau>3251
a) Xét trường hợp các chữ số đều bình đẳng :
Số cách sắp xếp 2 chữ số lẻ khác nhau từ A cho 4 vị trí :
\(C_3^1.C_4^1.C_2^1.C_3^1=72\)
Số cách sắp xếp 2 chữ số chẵn từ A cho 2 vị trí còn lại A :
\(C_4^1.C_2^1.C_3^1.C_1^1=24\)
=> Có tất cả : 72.24 = 1728 số
Xét trường hợp cố định số 0 đứng đầu
=> Số cách sắp xếp 2 chữ số lẻ từ A cho 3 vị trí :
\(C_3^1.C_3^1.C_2^1.C_2^1=36\)
Số cách sắp xếp 1 chữ số chẵn từ A cho vị trí còn lại :
\(C_3^1.C_1^1=3\)
=> Có tất cả : 1.36.3 = 108 số
=> Số các số thỏa mãn đề : 1728 - 108 = 1620 (số)
b) Gọi số thỏa mãn có dạng \(\overline{abcd}\)
TH1 a = 3 => b \(\in\left\{4;5;6\right\}\) hoặc b = 2
(*) \(b\in\left\{4;5;6\right\}\) => Số các số cần tìm : \(1.C_3^1.A_5^2=60\)
(*) b = 2 => Số các số cần tìm : \(1.1.1.C_2^1+1.1.1.C_4^1=6\)
TH1 có 66 số
TH2 \(a\in\left\{4;5;6\right\}\)
TH2 có : \(C_3^1.A_6^3=360\)
Vậy có tất cả 360 + 66 = 426
Biết 13,33<2 x X<14,44 thỏa mãn:
a) X là STN
b) X là số thập phân ( phần thập phân có 1 c/s)
a) 13,33<14<14,44
Vay 2 x X =14
X=14:2=7
b)13,33<13,4;13,5;13,6;13,7;13,8;13,9;14,0;14,1;14;2;14,3<14,44
Vay X=6,7 =6,8 =6,9 = 7,1 la TM nha Lê Hoàng Lan
1. a,Tìm x,y nguyên tố thỏa mãn 7x mũ 2 + 41 = 6 mũ y
b,tìm stn nhỏ nhất có 6 ước
c,tìm stn n để 2n - 5 chia hết cho n - 1
cho các số thực x y thỏa mãn x+y =15. tìm max của A= căn x+ 1 + căn y + 2
\(A^2=\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le2\left(x+1+y+2\right)=36\)
\(\Rightarrow A\le6\)
\(A_{max}=6\) khi \(\left\{{}\begin{matrix}x=8\\y=7\end{matrix}\right.\)
a) Tìm các số nguyên dương x,y thỏa mãn 2(x+y)+16=3xy
b)Tìm các số nguyên dương x,y thỏa mãn x2 - 2y2 = 5
c) CMR: đa thức B = 5x2 + 5y2 + 5z2 + 6xy -8xz - 8yz
d) CM số A = 99...9800...01 ( có n chữ số 9 và n chữ số 0) là số chính phương