Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
I am➻Minh
Xem chi tiết
linh đặng thị thùy
Xem chi tiết
Nguyễn Thị Ngọc Linh
Xem chi tiết
Mika Yuuichiru
Xem chi tiết
Lê Hoàng
15 tháng 3 2020 lúc 13:00

\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)

Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)

\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)

\(\Rightarrow A⋮2\forall n\in N\)

Mà 2 là số nguyên tố duy nhất mà chia hết cho 2

\(\Rightarrow n^3-6n^2+9n-2=2\)

\(\Leftrightarrow n^3-6n^2+9n-4=0\)

Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))

Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.

Khách vãng lai đã xóa
Minamoto Sakura
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 2 2022 lúc 23:44

a: Trường hợp 1: p=2

=>7p+5=19(nhận)

Trường hợp 2: p=2k+1

\(7p+5=14k+7+5=14k+12⋮2\)

=>Loại

Vậy: p=2

b: TRường hợp 1: p=2

=>11p+23=45(loại)

Trường hợp 2: p=2k+1

=>11p+23=22k+11+23=22k+34(loại)

Vậy: Ko có số p nào thỏa  mãn

Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

Nguyễn thị khánh hòa
Xem chi tiết
o0o đồ khùng o0o
5 tháng 1 2017 lúc 21:23

 1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24 = 3(3n+8) 
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b) 
Từ (a) và (b) => Mâu thuẫn 
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

khong có
Xem chi tiết
Công Chúa Yêu Văn
Xem chi tiết