Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Châu Anh
Xem chi tiết
ST
28 tháng 4 2017 lúc 20:24

a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)

\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy SMin = 2014 tại x = -2 và y = 5

b, Đặt A = |x + 6| + |7 - x| 

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:

\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)

Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)

Vậy AMin = 13 tại \(-6\le x\le7\)

Nguyễn Thị Lan Hương
28 tháng 4 2017 lúc 20:14

Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất 

=> | x+2 | = 0 =>  x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5 

Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất 

Nguyễn Bình
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Lê Song Phương
11 tháng 9 2023 lúc 14:32

Ta có \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

\(\Leftrightarrow\sqrt{x+2}+x^3=\sqrt{y+2}+y^3\)

 Đặt \(f\left(x\right)=\sqrt{x+2}+x^3\). Ta chứng minh \(f\left(x\right)\) là hàm số đồng biến với \(x\ge-2\)

Giả sử \(f\left(a\right)>f\left(b\right)\) với \(a,b\ge-2\)

\(\Rightarrow\sqrt{a+2}+a^3>\sqrt{b+2}+b^3\)

\(\Leftrightarrow\sqrt{a+2}-\sqrt{b+2}+a^3-b^3>0\)

\(\Leftrightarrow\dfrac{a-b}{\sqrt{a+2}+\sqrt{b+2}}+\left(a-b\right)\left(a^2+ab+b^2\right)>0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2-ab+b^2\right)>0\)     (*)

 Dễ thấy \(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2+ab+b^2>0\) với mọi \(a,b\ge-2\)

 Do đó từ (*) suy ra \(a>b\).

 Vậy ta có \(f\left(a\right)>f\left(b\right)\Rightarrow a>b\). Do đó \(f\) là hàm số đồng biến.

 Theo trên, ta có \(f\left(x\right)=f\left(y\right)\Rightarrow x=y\)

 Thay vào biểu thức B, ta có \(B=x^2+2x+10\)

\(B=\left(x+1\right)^2+9\) \(\ge9\).

 Dấu "=" xảy ra \(\Leftrightarrow x=-1\) (nhận) \(\Rightarrow y=-1\)

 Vậy GTNN của B là 9, xảy ra khi \(\left(x;y\right)=\left(-1;-1\right)\)

 

Võ Mai Linh
Xem chi tiết
Nguyễn Hữu Huy
18 tháng 5 2016 lúc 10:15

bài này dễ mà  

giá trị của S nhỏ nhất 

<=> Ix+2I và I2y-10I bé nhất mà chúng có giái trị bé nhất =0

=> giá trụ bé nhất của S là 2011

Thắng Nguyễn
18 tháng 5 2016 lúc 10:17

Smin=2011 khi x=-2;y=5

Trà My
18 tháng 5 2016 lúc 10:18

\(\left|x+2\right|\ge0\) với mọi x

\(\left|2y-10\right|\ge0\) với mọi y

=>\(\left|x+2\right|+\left|2y-10\right|\ge0\) với mọi x;y

=>\(S=\left|x+2\right|+\left|2y-10\right|+2011\ge0+0+2011=2011\) với mọi x;y

=>GTNN của S là 2011

Dấu "=" xảy ra <=> |x+2|=|2y-10|=0

<=>x=-2 và 2y=10

<=>x=-2 và y=5

Vậy.........................

Nguyễn Thị Vân Anh
Xem chi tiết

Ta có :\(B=x^2+2xy+y^2+2x+2y+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+10\)

\(=\left(x+y+1\right)^2+9\ge9\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow x+y+1=0\)

\(\Leftrightarrow x+y=-1\)

Vậy \(MinB=9\Leftrightarrow x+y=-1\)

Khách vãng lai đã xóa
Kị tử thần
Xem chi tiết
Edogawa Conan
11 tháng 10 2019 lúc 20:29

Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10

B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10

B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5

B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy MinB = 5 <=> x = 1 và y = 2

lan anh
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 20:23

\(VT=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\left(x-y\right)^2\left(x+y\right)^2=VP\)

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 20:23

VT\(=\left(x^2+y^2-2xy\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)

Phí Đức
31 tháng 10 2021 lúc 20:23

$(x^2+y^2)^2-4x^2y^2\\=(x^2+y^2-2xy)(x^2+y^2+2xy)\\=(x-y)^2(x+y)^2$

Thúy Phạm Phương
Xem chi tiết
๖ۣۜAmane«⇠
6 tháng 5 2019 lúc 15:04

Vì |x-y| 0 với mọi x,y;|x+1|0 vs mọi x=>A2016 vs mọi x,y

=> A đạt giá trị nhỏ nhất khi:{

|x−y|=0
|x+1|=0

⇔{

x−y=0
x+1=0

⇔{

x=y
x=−1

vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016

Trần Thanh Phương
6 tháng 5 2019 lúc 15:10

\(S=\left|x+2\right|+\left|2y-10\right|+2016\)

\(S\ge2016\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

Bùi Minh Khuê
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
24 tháng 6 2020 lúc 10:58

A = | x - 3 | + 1

Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)

Dấu = xảy ra <=> | x + 3 | = 0

                      <=> x + 3 = 0

                      <=> x = -3

Vậy AMin = 1 khi x = -3

B = -100 - | 7 - x |

Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)

=> \(-100-\left|7-x\right|\le-100\)

Dấu = xảy ra <=> - | 7 - x | = 0

                     <=> 7 - x = 0

                     <=> x = 7

Vậy BMax = -100 khi x = 7

C = -( x + 1 )2 - | 2 - y | + 11

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)

=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)

Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0

                     <=> x + 1 = 0 và 2 - y = 0

                     <=> x = -1 và y = 2

Vậy CMax = 11 khi x = -1 ; y = 2

D = ( x - 1 )2 + | 2y + 2 | + 3

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)

Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0

                      <=> x - 1 = 0 và 2y + 2 = 0

                      <=> x = 1 và y = -1

Vậy DMin = 3 khi x = 1 và y = -1

Khách vãng lai đã xóa
シA-G:longzzシ
24 tháng 6 2020 lúc 11:05

a) A=/x-3/+1>=0+1=1

dấu "="sảy ra <=>x-3=0<=>x=3

vậy min A=1 <=>x=3

b) B=-100-/7-x/=<-100-0=-100

dấu "="sảy ra <=>7-x=0<=>x=7

vậy max B=-100<=>x=7

c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11

dấu "="sảy ra <=>x=-1vày=2

vậy max C=11<=>x=-1 và y=-2

d)D=(x-1)^2+/2y+2/+3>=0+0+3=3

dấu "="sảy ra <=>x=1 và y =-1

vậy min D=3<=>x=1 và y=-1

Khách vãng lai đã xóa
Lê Hồng Đức
Xem chi tiết