giải phương trình
\(\sqrt{x^2-8x+16}\)=x+2
Giải phương trình:
\(\sqrt{x-2}+\sqrt{6-x}=x^2-8x+16+2\sqrt{2}\)
Ghi thiếu đề bài nên tl lại
`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`
Áp dụng BĐT bunhia ta có:
`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`
`=>VT<=2sqrt2(1)`
Mặt khác:
`VP=x^2-8x+16+2sqrt2`
`=(x-4)^2+2sqrt2>=2sqrt2`
`=>VP>=2sqrt2(2)`
`(1)(2)=>VT=VP=2sqrt2`
`<=>x=4`
Vậy `S={4}`
`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`
Áp dụng BĐT bunhia ta có:
`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`
`=>VT<=2sqrt2(1)`
Mặt khác:
`VP=x^2-8x+16+2sqrt2`
`=(x-4)^2+2sqrt2>=2sqrt2`
`=>VP>=2sqrt2(2)`
`(1)(2)=>VT=VP=2sqrt2`
`<=>x=4`
Vậy `S={4}`
Giải phương trình: \(\sqrt{x^2+6x+9}+\sqrt{x^2+8x+16}+\sqrt{x^2+10x+25}=9x\)
=>\(\sqrt{\left(x+3\right)^2}\)+ \(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x
=> x + 3 + x + 4 + x + 5 = 9x
=> - 6x = - 12
=> x=2
Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a )
Vì \(\sqrt{x^2+6x+9}>0\\ \)
\(\sqrt{x^2+8x+16}>0\\ \)
\(\sqrt{x^2+10x+25}>0\\ \)
Suy ra 9x>0. Suy ra x>0 .Nha bạn!
giải các phương trình sau:
a) \(\sqrt{x^2-2x+1}\)=\(x^2-1\)
b) \(\sqrt{x^2+x+\dfrac{1}{4}}\)=\(x\)
c) \(\sqrt{x^4-8x^2+16}\)=\(2-x\)
Giải phương trình
\(\sqrt{5-x}+\sqrt{x-3}=\frac{2x^2}{8x-16}\)
Txđ: \(x\in[3;5]\)
Áp dụng BĐT : \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)Với \(a,b\ge0\)(Chứng minh cái này dễ thôi, bạn bình phương 2 vế là ra nhé)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}\le\sqrt{2(5-x+x-3)}\)\(=2\)
Mặt khác:
\(\frac{2x^2}{8x-16}=\frac{x^2}{4\left(x-2\right)}=\frac{[\left(x-2\right)+2]^2}{4\left(x-2\right)}=\frac{\left(x-2\right)^2+4\left(x-2\right)+4}{4\left(x-2\right)}=\frac{x-2}{4}+\frac{1}{x-2}+1\)
\(\ge2\sqrt{\frac{x-2}{4}.\frac{1}{x-2}}+1=2\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}5-x=x-3\\\frac{x-2}{4}=\frac{1}{x-2}\end{cases}}\)
=> \(x=4\)(Thỏa mãn Đ/K)
Giải các phương trình sau:
1/ \(2x^2-8x+\sqrt{x^2-4x+16}=4\)
2/\(3\left(x^2+2\right)=10\sqrt{x^3+1}\)
3/\(\sqrt{3\left(1-x\right)}-\sqrt{3+x}=2\)
Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)
P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)
Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó :
\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)
Với t = 4 hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
Câu 1 bạn trên giải rồi mik k giải nx nha
2/ \(3\left(x^2+2\right)=10\sqrt{x^3+1}\)
\(3\left(x^2-x+1\right)+3\left(x+1\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b\ge0\end{matrix}\right.\)
pt⇔ \(3a^2+3b^2-10ab=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3b=b\\a=3b\end{matrix}\right.\)
Đến đây bạn tự giải tiếp nha
3/ \(\sqrt{3-3x}-\sqrt{3+x}=2\)
\(\left(\sqrt{3-3x}-3\right)-\left(\sqrt{3+x}-1\right)=0\)
\(\dfrac{-3\left(x+2\right)}{\sqrt{3-3x}+3}-\dfrac{x+2}{\sqrt{3+x}+1}=0\)
+) \(x=-2\left(TM\right)\)
+) \(x\ne-2\Rightarrow\dfrac{-3}{\sqrt{3-3x}+3}-\dfrac{1}{\sqrt{3+x}+1}=0\)
Vì VT<0 => ptvn
2 ) ĐK : \(x\ge-1\)
P/t \(\Leftrightarrow9\left(x^2+2\right)^2=100\left(x^3+1\right)\)
\(\Leftrightarrow9x^4+36x^2+36=100x^3+100\)
\(\Leftrightarrow9x^4-100x^3+36x^2-64=0\)
\(\Leftrightarrow\left(x^2-10x-8\right)\left(9x^2-10x+8\right)=0\)
\(\Leftrightarrow x^2-10x-8=0\) ( 9x^2 - 10x + 8 > 0 )
\(\Leftrightarrow x=5\pm\sqrt{33}\) ( t/m )
Vậy ...
Giải phương trình :\(x^2+8x+16-2\left(x+1\right).\sqrt{2x+5}-2\sqrt{3x^2+24x+21}=0\)
\(\left(\sqrt{2x+5}-\left(x+1\right)\right)^2+\left(\sqrt{3\left(x+1\right)}-\sqrt{x+7}\right)^2=0.\\
\)
Đến đây chắc biết phải làm gì =))
giải phương trình
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
.
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)