Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị thảo vân
Xem chi tiết
nguyen thi khanh hoa
24 tháng 10 2015 lúc 21:14

ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

            \(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)

             \(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)

ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\)\(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)

vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6

 

ĐẶNG QUỐC SƠN
Xem chi tiết
Nguyễn Thị Hoàng
Xem chi tiết
Nguyễn Linh Chi
16 tháng 10 2019 lúc 10:44

ĐK: x\(\ge0\)

Đặt \(A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Đặt \(t=\sqrt{x}\)( t >=0)

Có: \(A=\frac{t}{t^2+t+1}\)

<=> \(At^2+\left(A-1\right)t+A=0\)(1)

TH1: A =0 => t =0

TH2: A khác 0.

(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow\left(A-1\right)^2-4A^2\ge0\Leftrightarrow-3A^2-2A+1\ge0\Leftrightarrow-1\le A\le\frac{1}{3}\)

Do đó: A min = -1 thay vào tìm x

           A max = 1/3 thay vào tìm x .

Kết luận....

Hà Trang
Xem chi tiết
alibaba nguyễn
9 tháng 11 2016 lúc 16:19

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)

\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)

Phan Bá Quân
Xem chi tiết
Minh Nguyen
30 tháng 3 2020 lúc 10:41

ĐK:  \(x\ge0\)

\(M=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)

Để M min \(\Leftrightarrow\frac{3}{\sqrt{x}+2}\)max

\(\Leftrightarrow\sqrt{x}+2\)min

\(\Leftrightarrow\sqrt{x}\)min

\(\Leftrightarrow x\)min

mà \(x\ge0\)

\(\Leftrightarrow x=0\)

Vậy \(Min_M=\frac{-1}{2}\Leftrightarrow x=0\)

Khách vãng lai đã xóa
HằngAries
30 tháng 3 2020 lúc 21:14

TOÁN 7  HAY TOÁN 9 ĐÂY

Khách vãng lai đã xóa
shoppe pi pi pi pi
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Vũ Thị NGọc ANh
Xem chi tiết
rfgafd khánh
Xem chi tiết