vẽ 2 đường thẳng \(xx'\)và \(yy'\) cắt nhau tại O sao cho xOy=50độ. tính số đo các góc xOy', x'Oy', x'Oy
Vẽ hai đường thẳng xx' và yy' cắt nhau tại O sao cho xOy=60o . Tính số đo góc xOy' , x'Oy', x'Oy ?
Vì xOy và xOy' là 2 góc kề bù
=> xOy + xOy' = 180*
Thay xOy = 60*
=> xOy' = 180* - 60*
xOy' = 120*
Vì xx' và yy' cắt nhau tại O
=> xOy và x'Oy' là 2 góc đối đỉnh mà xOy = 60*
=> xOy = x'Oy' = 60*
Vì x'Oy là góc đối đỉnh của xOy' mà xOy' = 120*
=> x'Oy = 120*
Tính rõ rồi nha bạn, nếu cần chứng minh 2 góc đối đỉnh, lm đầy đủ hơn nữa thì bảo mik, cn như này là cx đc điểm tối đa òi
Ta có:
Do \(\widehat{xOy}\) và \(\widehat{xOy'}\) là 2 góc kề bù
\(\Rightarrow\)\(\widehat{xOy}\) + \(\widehat{xOy'}\) = 180o
\(\Rightarrow\)60o + \(\widehat{xOy'}\) = 180o
\(\Rightarrow\)\(\widehat{xOy'}\) = 180o - 60o = 120o
Vậy \(\widehat{xOy'}\)= 120o
Ta có:
Do \(\widehat{xOy}\)và góc \(\widehat{x'Oy'}\) là 2 góc đối đỉnh
\(\Rightarrow\)\(\widehat{xOy}=\widehat{x'Oy'}=60^o\)
Ta có:
Do \(\widehat{xOy}\) và \(\widehat{x'Oy}\) là 2 góc kề bù
\(\Rightarrow\widehat{xOy}+\widehat{x'Oy}=180^o\)
\(\Rightarrow60^o+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{x'Oy}=180^o-60^o=120^o\)
Vậy \(\widehat{x'Oy=120^o}\)
Hoặc bạn có thể giải bằng cách này thì ngắn gọn hơn
Ta có:
Do \(\widehat{xOy'}\) và \(\widehat{x'Oy}\) là hai góc đối đỉnh
\(\Rightarrow\widehat{xOy'}=\widehat{x'Oy}=120^o\)
Vậy \(\widehat{x'Oy}=120^o\)
Hai đường thẳng xx’, yy’ cắt nhau tại điểm O và x O y ^ = 30 ° .
Hãy đo và cho biết số đo của các góc x ' O y ' ^ , x ' O y ^ , x O y ' ^ .
x ' O y ' ^ = 30 ° , x ' O y ^ = 150 ° , x O y ' ^ = 150 ° .
cho 2 đường thẳng xx' và yy' cắt nhau tại o biết hiệu số đo của hai góc kề bù là 40 độ và xoy>x'oy tính số đo của các góc a) xOy và x'Oy' b ) x'Oy và xOy ( cứu e với mấy ac ơi :( )
\(\widehat{xOy}+\widehat{x'Oy=180^0}\) (Vì \(\widehat{xOy}\) và \(\widehat{x'Oy}\) là hai góc kề bù)
\(\widehat{xOy}-\widehat{x'Oy}=40^0\)
a.\(\widehat{xOy}=\left(180^0+40^0\right):2=110^0\)
\(\widehat{x'Oy'}=\widehat{xOy}=110^0\) ( 2 góc đối đỉnh)
b. \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-110^0=70^0\) (2 góc kề bù)
\(\widehat{xOy'}=\widehat{x'Oy}=70^0\) ( 2 góc đối đỉnh)
cho 2 đường thẳng xx' và yy' cắt nhau tại O sao cho xO6y=2.x'Ôy. Tính các góc xOy, x'Oy, xOy', x'Oy'
\(\widehat{xOy}=\widehat{x'Oy'}=120^0;\widehat{x'Oy}=\widehat{xOy'}=60^0\)
cho 2 đường thẳng xx' và yy' cắt nhau tại O biết xoy' = 4.x'oy' . tính các góc xoy , x'oy , xoy' và x'oy'
ta có: góc xOy' + góc x'Oy' = 180 độ ( kề bù)
=> 4.góc x'Oy' + góc x'Oy' = 180 độ
5.góc x'Oy' = 180 độ
góc x'Oy' = 180 độ : 5
góc x'Oy' = 36 độ
=> góc x'Oy' = góc xOy = 36 độ ( đối đỉnh)
=> góc xOy = 36 độ
mà góc xOy + góc x'Oy = 180 độ ( kề bù)
thay số: 36 độ + góc x'Oy = 180 độ
góc x'Oy = 180 độ - 36 độ
góc x'Oy = 144 độ
=> góc x'Oy = góc xOy' = 144 độ ( đối đỉnh)
=> góc xOy' = 144 độ
tự kẻ hình nha bn
Ta có : xOy' + x'Oy' =1800
xOy' = 4x'Oy'
=> xOy' = 360
x'Oy' = 1440
=> xOy' = x'Oy = 360
x'Oy' = xOy = 1440
Hai đường thẳng xx' và yy' cắt nhau và yy' cắt nhau tại O. Tính số đo góc tạo thành trong các trường hợp sau.
a)xoy+x'oy'=180
b)xoy=3x'Oy'
c)xoy-x'oy'
Cho 2 đường thẳng xx' và yy' cắt nhau tại O . Tổng số đo xOy + x'Oy' = 140* . Tính góc x'Oy'
Giải chi li các bạn nhe
Cho hai đường thẳng xx' và yy' cắt nhau tại O sao cho góc xOy = 40 độ. Vẽ Om và On lần lượt là tia phân giác của các góc xOy và góc x'Oy'. Tính số đo tất cả các góc đối đỉnh là O
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)
Cho 2 đường thẳng xx' và yy' cắt nhau tại O. Cho góc xOy = 50 độ.
Tính số đo góc x'Oy, xOy', x'Oy'.Vẽ tia Ot là tia phân giác của góc xOy, Ot' là tia đối của tia Ot. Tính số đo góc xOt, xOt', yOt, yOt', t'Ox, t'Oy'.2 đường thẳng xx' và yy' vuông góc với nhau và cắt nhau tại O. Vẽ tia Oz nằm giữa hai tia Ox và Oy sao cho xOy=5.xOy. số đo x'Oy là