Cho tam giác MNP vuông tại M. Kẻ MK vuông góc NP(K thuộc NP), MI là phân giác của góc KMP( I thuộc KP ).
a) Chứng minh rằng góc NMI=NIM
b) Cho góc P=40 độ. Tính góc N và góc PMI
Các bạn giúp mình với cần gấp lắm, cảm ơn nhiều nha
Cho tam giác MNP vuông tại M,có MN = 6cm MP=8cm
a Tính độ dài cạnh Np và chu vi tam giác MNP
b,Tính đường phân giác của góc N cắt Mp tại K. Vẽ KE Vuông góc NP(E thuộc NP)
Chứng minh Tam giác MNK = Tam giác ENK
c, Chứng minh MK <KP
a: NP=10cm
C=MN+MP+NP=24(cm)
b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có
NK chung
\(\widehat{MNK}=\widehat{ENK}\)
Do đó: ΔMNK=ΔENK
c: Ta có: MK=EK
mà EK<KP
nên MK<KP
cho tam giác MNP vuông tại N có góc M bằng 60 độ. tia phân giác của góc NMP cắt NP ở E . kẻ EK vuông góc với NP (K thuộc MP). Kẻ PT vuông góc với tia ME ( T thuộc tia ME) CM:
a) tam giác MNE = tam giác MKE
và ME vuông góc với NK
b)KM=Kp
c)EP>MN
d) ba đường thẳng MN,PT,KE đồng quy tại 1 điểm
(ko vẽ hình cx dc ạ)
Cho tam giác MNP vuông tại M. Kẻ MK vuông góc với NP ( K thuộc NP ). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI.
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP
Cho tam giác MNP vuông tại M, Kẻ MI vuông góc với NP tại I. Vẽ MK là tia phân giác của
IMP (K∈IP). Đường thẳng đi qua K và vuông góc với MP, cắt MP tại A.
1) Chứng minh KM là tia phân giác IKA.
2) Chứng minh IK < KP.
3) Gọi giao điểm của AK và MI là B. Chứng minh MK⊥BP và IA//BP.
1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có
MK chung
góc IMK=góc AMK
=>ΔMIK=ΔMAK
=>góc IKM=góc AKM
=>KM là phân giác của góc AKI
2: KI=KA
KA<KP
=>KI<KP
3: Xét ΔMBP có
PI,BA là đường cao
PI cắt BA tại K
=>K là trực tâm
=>MK vuông góc PB
MI=MA
KI=KA
=>MK là trung trực của AI
=>MK vuông góc AI
=>AI//PB
Cho tam giác MNP cân tại M có MN =MP 8cm , NP=10cm.
Kẻ MI vuông góc với NP (I thuộc NP)
a chứng minh rằng: IB =IC
b. Kẻ IH vuông góc với MN (H thuộc MN),IK vuông với MP (K thuộc MP). Chứng minh IH=IK
Cho tam giác MNP cân tại Mc.Kẻ Nk vuông góc với MP ( k thuộc MP ).Kẻ PH vuông góc với MN ( h thuộc MN ).NK và PH cắt nhau tại I.
a.chứng minh rằng tam giác HNP=tam giác KPN.
b.so sánh góc HNI và góc KPI.
c.Đường thẳng MI cắt NP tại D,chứng minh rằng MD vuông góc với NP tại D
d.chứng minh rằng HK//NP
Cho tam giác MNP vuông tại M, đường phân giác ND(D thuộc MP). Kẻ ME vuông góc với ND(E thuộc ND), ME cắt NP tại K. Chứng minh:
a.Tam giác MNE = Tam giác KNE
b. DK vuông góc NP
c. Kẻ MH vuông góc với NP(H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có
NE chung
góc MNE=góc KNE
=>ΔMNE=ΔKNE
b: Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔNMD=ΔNKD
=>góc NKD=90 độ
=>DK vuông góc NP
Cho tam giác MNP vuông tại N biết MN=6 , MP =10 . Kẻ MI là phân giác góc M ( I thuộc NP ) từ I kẻ IH vuông góc với MP ( H thuộc MP )
a) tính IN /IP
b) chứng minh MN.HI = MH.NP
c) tính diện tích tam giác MNI
a: IN/IP=MN/MP=3/5
c: NP=căn 10^2-6^2=8cm
NI là phân giác
=>NI/MN=IP/MP
=>NI/3=NP/5=8/8=1
=>NI=3cm
S MNI=1/2*3*6=9cm2