Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cỏ dại
Xem chi tiết
Trần Thị  Anh Thi
Xem chi tiết
alibaba nguyễn
11 tháng 11 2016 lúc 22:22

\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}}=\sqrt{\frac{7-3\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}}\)

\(=\sqrt{5-\sqrt{5}}\)

gh
Xem chi tiết
Kiệt Nguyễn
5 tháng 10 2020 lúc 12:13

a) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}=\frac{\left(3-\sqrt{2}\right)+\left(3+\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\frac{6}{3^2-\left(\sqrt{2}\right)^2}=\frac{6}{7}\)

b) \(\frac{2}{3\sqrt{2}-3\sqrt{3}}-\frac{3}{2\sqrt{3}+3\sqrt{3}}=\frac{2\left(2\sqrt{3}+3\sqrt{3}\right)-3\left(3\sqrt{2}-3\sqrt{3}\right)}{\left(3\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{3}+3\sqrt{3}\right)}=\frac{19\sqrt{3}-9\sqrt{2}}{-45+15\sqrt{6}}=-\frac{13\sqrt{3}+10\sqrt{2}}{15}\)c) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{5-2\sqrt{15}+3+5+2\sqrt{15}+3}{2}=\frac{16}{2}=8\)d) \(\frac{3}{2\sqrt{2}-3\sqrt{3}}-\frac{3}{2\sqrt{2}+3\sqrt{3}}=\frac{3\left(2\sqrt{2}+3\sqrt{3}\right)-3\left(2\sqrt{2}-3\sqrt{3}\right)}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=-\frac{18\sqrt{3}}{19}\)

Khách vãng lai đã xóa
Nguyễn Trọng Kiên
Xem chi tiết
wary reus
Xem chi tiết
Thao Van
18 tháng 8 2016 lúc 17:10

a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)

Thao Van
18 tháng 8 2016 lúc 17:17

a, = \(=\frac{\sqrt{7}-5}{2}-\frac{3-\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{7-4}-\frac{20-5\sqrt{7}}{16-7}=\frac{\sqrt{7}-5-3+\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{9}\)

Thao Van
19 tháng 8 2016 lúc 14:15

b. = \(\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)

wary reus
Xem chi tiết
qwerty
25 tháng 6 2017 lúc 7:34

a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)

\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)

b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)

c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)

d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)

\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)

\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)

\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)

\(=\dfrac{\sqrt{1\cdot4}}{2}\)

\(=\dfrac{2}{2}\)

\(=1\)

Đinh Thị Thùy Trang
Xem chi tiết
FL.Hermit
11 tháng 8 2020 lúc 14:19

Đặt: \(A=\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\)

=> \(A^2=\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

=> \(A^2=2\sqrt{5}+2\sqrt{5-4}\)

=> \(A^2=2\sqrt{5}+2\)

=> \(A^2=2\left(\sqrt{5}+1\right)\)

=> \(A=\sqrt{2\left(\sqrt{5}+1\right)}\)

=> \(\frac{A}{\sqrt{\sqrt{5}+1}}=\frac{\sqrt{2\left(\sqrt{5}+1\right)}}{\sqrt{\sqrt{5}+1}}=\sqrt{2}\)

Đặt: \(B=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)

=> \(VT=\frac{A}{\sqrt{\sqrt{5}+1}}-B=\sqrt{2}-\left(\sqrt{2}-1\right)=\sqrt{2}-\sqrt{2}+1=1\)

VẬY KẾT QUẢ CỦA PHÉP TÍNH = 1.

Khách vãng lai đã xóa
Nguyễn Nhã Thanh
Xem chi tiết
lyna trang
13 tháng 6 2018 lúc 21:15

Đầu hàng thôi,tôi ko bt ♤♡◇♧><

Đỗ Minh Anh
Xem chi tiết
Lê Trung Hiếu
21 tháng 7 2019 lúc 21:41

a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

\(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

= -2

b); c); d) làm tương tự