trong mặt phảng toạn độ Oxy, cho tam giác ABC có phương trình các cạnh AB, AC lần lượt là x=0; x-y=0. phép vị tự tâm 0 tỉ số k= -3 biến tam giác A'B'C'. khi đó góc A' của tam giác A'B'C' có số đo là?
trong mặt phẳng hệ tọa độ Oxy cho tam giác ABC cân tại A . biết phương trình các đường thẳng AB,BC lần lượt là x-7y+14=0 và 2x+y-2=0. viết phương trình cạnh AC , biết đường thẳng AC đi qua M(4,0)
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)
Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC. Hai điểm M(4;-1),N(0;-5) lần lượt thuộc AB, AC và phương trình đường phân giác trong góc A là x- 3y+5 = 0, trọng tâm của tam giác ABC là G. Tìm toạ độ các đỉnh của tam giác ABC.
Chọn A
Phân tích.
- Ta thấy A thuộc đường phân giác trong góc A:x-3y+5=0 , giờ chỉ cần viết được phương trình AC là tìm được A.
- Trên AC đã có một điểm N, cần tìm thêm một điểm nữa. Chú ý khi lấy M’ đối xứng với M qua phân giác trong ta có M’ thuộc cạnh AC.
- Tìm M’ viết được phương trình AC từ đó suy ra A. Có A, M viết được phương trình AB.
- Gọi B, C và tham số hóa dựa vào B thuộc AB, C thuộc AC. Áp dụng công thức trọng tâm sẽ tìm ra được tọa độ B, C.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có M(2;0) là trung điểm của cạnh AB. Đường trung tuyến và đường cao qua đỉnh A lần lượt có phương trình là 7x-2y-3=0 và 6x-y-4=0. Phương trình đường thẳng AC là:
A.3x-4y-5=0
B.3x+4y+5=0
C.3x-4y+5=0
D.3x+4y-5=0
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có M ( 2 ; 0 ) là trung điểm của cạnh AB. Đường trung tuyến và đường cao qua đỉnh A lần lượt có phương trình là 7 x - 2 y - 3 = 0 và 6 x - y - 4 = 0 . Phương trình đường thẳng AC là
A. 3 x - 4 y - 5 = 0
B. 3 x + 4 y + 5 = 0
C. 3 x - 4 y + 5 = 0
D. 3 x + 4 y - 5 = 0
Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC. Hai điểm M 4 ; - 1 , N 0 ; - 5 lần lượt thuộc AB, AC và phương trình đường phân giác trong góc A là x - 3 y + 5 = 0 , trọng tâm của tam giác ABC là G. Tìm toạ độ các đỉnh của tam giác ABC
A. A 1 ; 2 , B - 2 ; 5 , C - 1 ; 12
B. A 1 ; 2 , B - 2 ; 5 , C 0 ; 1
C. A 1 ; 0 , B - 2 ; 5 , C - 1 ; 12
D. A 1 ; 2 , B - 1 ; 5 , C - 1 ; 12
Đáp án A
Phân tích.
- Ta thấy A thuộc đường phân giác trong góc A: x - 3 y + 5 = 0 giờ chỉ cần viết được phương trình AC là tìm được A.
- Trên AC đã có một điểm N, cần tìm thêm một điểm nữa. Chú ý khi lấy M’ đối xứng với M qua phân giác trong ta có M’ thuộc cạnh AC.
- Tìm M’ viết được phương trình AC từ đó suy ra A. Có A, M viết được phương trình AB.
- Gọi B, C và tham số hóa dựa vào B thuộc AB, C thuộc AC. Áp dụng công thức trọng tâm sẽ tìm ra được tọa độ B, C.
Hướng dẫn giải.
Gọi M ' ∈ A C là điểm đối xứng của M qua phân giác trong góc A, gọi I là giao điểm của MM' với phân giác trong góc A → I là trung điểm MM’.
Phương trình MM’ là: 3 x + y - 11 = 0
Toạ độ điểm I là nghiệm của hệ:
M’ đối xứng với M qua
Đường thẳng AC qua N và M’ nên có phương trình:
Tọa độ A là nghiệm của hệ:
Đường thẳng AB đi qua A, M nên có phương trình:
x + y - 3 = 0
Gọi
Do G là trọng tâm tam giác ABC nên ta có:
Vậy tọa độ các đỉnh của tam giác ABC là:
1. Trong mặt phẳng Oxy cho tam giác ABC có trọng tâm G(−2; 0) biết phương trình các cạnh AB, AC theo thứ tự là 4x+y+14=0; 2x+5y-2=0. Tìm tọa độ các đỉnh A, B, C.
2.Lập phương trình các cạnh AB, AC của tam giác ABC biết đường tuyến CM có phương trình 2x+y-6=0, A(1; 1) và cạnh BC có phương trình x+y-6=0
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là 2x - y + 1 = 0 và x + y - 4 = 0. Phương trình đường thẳng AD là
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là 2x=y+1=0 và x+y-4=0 Phương trình đường thẳng AD là
A. x+2y+5=0
B. x-2y+5=0
C. x+2y-7=0
D. x-2y-7=0
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là
2x - y + 1 = 0 và x + y -4 = 0. Phương trình đường thẳng AD là