Tìm max \(\frac{2\sqrt{x}-4}{x-4}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
tìm Max của biểu thức
\(P=\frac{\sqrt{x-4}}{x-2}+\frac{\sqrt{x-1}}{x+4}\)
Tìm max \(A=\frac{x^4+x+1+32\sqrt[4]{x^3-4x^2+7x-12}}{x^4+x^2+16x-11}\)
Tìm max \(\sqrt{-x^2+x+\frac{3}{4}}\)
\(\sqrt[]{-x^2+2.\frac{1}{2}x-\frac{1}{4}+1}\) = \(\sqrt[]{-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+1}\)
=\(\sqrt[]{-\left(x-\frac{1}{2}\right)^2+1}\)
vậy max = 1 khi x = 1/2 ( bạn có thể đặt DK để xem và so sánh)
Giải dùm:
a, Tìm Min , Max:
4x-16\(\sqrt{x}\)+4y-22\(\sqrt{y}\)-4\(\sqrt{xy}\)+36
b,Tìm Max: \(\frac{6\sqrt{x}+3}{2x+4}\)
c,Tìm Min: \(\frac{2}{1-x}+\frac{1}{x}\left(0< x< 1\right)\)
Ukm
It's very hard
l can't do it
Sorry!
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
1) Cho x;y>0 thoả mãn x+y=1 Tìm max B = \(x^2y^3\)
2) Cho x+y>0 thoả man x-y >= 1 Tìm max C = \(\frac{4}{x}-\frac{1}{y}\)
3) Tìm min M = \(\frac{x-3}{\sqrt{x-1}-\sqrt{x}}\)
TÌm Max:
A=\(\frac{xy\sqrt{z-6}+yz\sqrt{x-2}+zx\sqrt{y-4}}{xyz}\)
Điều kiện:......
Áp dụng BĐT AM-GM ta có:
\(A=\frac{xy\sqrt{z-6}+yz\sqrt{x-2}+xz\sqrt{y-4}}{xyz}\)
\(=\frac{\sqrt{z-6}}{z}+\frac{\sqrt{x-2}}{x}+\frac{\sqrt{y-4}}{y}\)
\(=\frac{\sqrt{6\left(z-6\right)}}{\sqrt{6}z}+\frac{\sqrt{2\left(x-2\right)}}{\sqrt{2}x}+\frac{\sqrt{4\left(y-4\right)}}{\sqrt{4}y}\)
\(\le\frac{\frac{6+z-6}{2}}{\sqrt{6}z}+\frac{\frac{2+x-2}{2}}{\sqrt{2}x}+\frac{\frac{4+y-4}{2}}{\sqrt{4}y}\)
\(\le\frac{\frac{z}{2}}{\sqrt{6}z}+\frac{\frac{x}{2}}{\sqrt{2}x}+\frac{\frac{y}{2}}{\sqrt{4}y}=\frac{1}{2}\left(\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}\right)\)
Xảy ra khi \(z=12;y=8;x=4\)
cho biểu thức
p=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\)
a)rút gọn biểu thức
b)tìm x dể p =8/9
c)tìm Max,Min của p
diều kiện x >= 0
P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
= \(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)
=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
P=8/9
<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)
<=> \(2x-5\sqrt{x}+2=0\)
<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)
vậy x=4 hoặc x=1/4 thì p=8/9
a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)
\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để P=8/9
\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)
Tìm min, max của: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)