Giải phương trình nghiệm nguyên sau:
9x + 2 = y2 + y
Giải phương trình nghiệm nguyên : \(9x+2=y^2+y\)
\(9x+2=y^2+y\Rightarrow9x+2=y\left(y+1\right)\)
\(\Rightarrow9x+2⋮2\Rightarrow9x⋮2\Rightarrow x⋮2\)
Vậy x chia hết cho 2 (cứ thay 1 số x chia hết cho 2 thì tìm được 1 số y)
Vậy có vô số x,y thỏa mãn đề.
giải phương trình nghiệm nguyên: x+y+xy=x2+y2
\(x+y+xy=x^2+y^2\)
⇔ \(2xy+2x+2y=2x^2+2y^2\)
⇔ \(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
⇔ \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
⇔
⇔
Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).
Giải các phương trình sau:
a, \(9x^2+y^2=18x+6y-18\)
b, \(y^3=x^3+x^2+x+1\) với nghiệm nguyên
a/ \(9x^2+y^2=18x+6y-18\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
a) \(9x^2+y^2=18x+6y-18\)
\(\Rightarrow9x^2+y^2-18x-6y+9=0\)
\(\Rightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)
Mà \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)
Vậy ....................
Câu b để mik nghĩ tiếp
b/ Ta có:
\(x^3< y^3=x^3+x^2+x+1< \left(x+2\right)^3\)
\(\Rightarrow x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}\)
a,giải phương trình nghiệm nguyên
x2(y-1)+y2(x-1)=1
b, tìm tất cả nghiệm nguyên của pt
3x-16y-24=\(\sqrt{9x^2+16x+32}\)
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
Tìm các nghiệm nguyên của phương trình sau: 7(x2+y2) = 25(x+y)
giải phương trình nghiệm nguyên : x2 = y2
Giải phương trình nghiệm nguyên: \(9x^2+12x=4y^2+17\)
gọi x1,x2 là 2 nghiệm của phương trình \(3x^2+5X-6=0\) không giải phương trình hãy lập phương trình bậc hai ẩn y có 2 nghiệm y1,y2 thỏa mãn y1=2x1-x2 và y2=2x2-x1
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)
\(\Rightarrow y_1;y_2\) là nghiệm của:
\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)
Tìm nghiệm nguyên của phương trình:
9x + 2 = y2 + y
https://olm.vn/hoi-dap/detail/245049015319.html?pos=572115847211