Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bảo Trân
Xem chi tiết
Pham Van Hung
2 tháng 12 2018 lúc 12:18

\(9x+2=y^2+y\Rightarrow9x+2=y\left(y+1\right)\)

\(\Rightarrow9x+2⋮2\Rightarrow9x⋮2\Rightarrow x⋮2\)

Vậy x chia hết cho 2 (cứ thay 1 số x chia hết cho 2 thì tìm được 1 số y) 

Vậy có vô số x,y thỏa mãn đề.

Nguyễn An
Xem chi tiết
Trên con đường thành côn...
30 tháng 7 2021 lúc 21:16

undefined

Phía sau một cô gái
30 tháng 7 2021 lúc 21:16

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

Nguyễn Khắc Quang
Xem chi tiết
alibaba nguyễn
12 tháng 3 2021 lúc 19:17

a/ \(9x^2+y^2=18x+6y-18\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Khách vãng lai đã xóa
Lê Đức Lương
12 tháng 3 2021 lúc 19:25

a) \(9x^2+y^2=18x+6y-18\)

\(\Rightarrow9x^2+y^2-18x-6y+9=0\)

\(\Rightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)

Mà \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Vậy ....................

Câu b để mik nghĩ  tiếp

Khách vãng lai đã xóa
alibaba nguyễn
12 tháng 3 2021 lúc 19:31

b/ Ta có:

\(x^3< y^3=x^3+x^2+x+1< \left(x+2\right)^3\)

\(\Rightarrow x^3+x^2+x+1=\left(x+1\right)^3\)

\(\Leftrightarrow2x^2+2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}\)

Khách vãng lai đã xóa
vu anh duc
Xem chi tiết
Nguyễn Linh Chi
11 tháng 9 2020 lúc 23:43

a.  \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)

<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)

<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)

Đặt: x + y = u; xy = v => u; v là số nguyên

Ta có: uv - \(u^2+2v=1\)

<=> \(u^2-uv-2v+1=0\) 

<=> \(u^2+1=v\left(2+u\right)\)

=> \(u^2+1⋮2+u\)

=> \(u^2-4+5⋮2+u\)

=> \(5⋮2-u\)

=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1 

Mỗi trường hợp sẽ tìm đc v 

=> x; y 

Khách vãng lai đã xóa
Tấn Sang Nguyễn
Xem chi tiết
Dung Vu
Xem chi tiết
Ngô Hồng Thuận
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2021 lúc 15:59

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)

\(\Rightarrow y_1;y_2\) là nghiệm của:

\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)

Aeris
Xem chi tiết
I - Vy Nguyễn
8 tháng 3 2020 lúc 11:03

https://olm.vn/hoi-dap/detail/245049015319.html?pos=572115847211

Khách vãng lai đã xóa