cho A=\(\sqrt{2009}+\sqrt{2010}+\sqrt{2011}\)
B=\(\sqrt{2007}+\sqrt{2008}+\sqrt{2015}\)
So sánh A và B
\(A=\sqrt{2009}+\sqrt{2010}+\sqrt{2011}\)
\(B=\sqrt{2007}+\sqrt{2008}+\sqrt{2015}\)
\(A-B=\sqrt{2009}-\sqrt{2007}+\sqrt{2010}-\sqrt{2008}+\sqrt{2011}-\sqrt{2015}\)
\(=\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}\)
Ta có \(\left\{{}\begin{matrix}\sqrt{2009}+\sqrt{2007}< \sqrt{2011}+\sqrt{2015}\\\sqrt{2010}+\sqrt{2008}< \sqrt{2011}+\sqrt{2015}\end{matrix}\right.\)
\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}>\frac{2}{\sqrt{2011}+\sqrt{2015}}+\frac{2}{\sqrt{2011}+\sqrt{2015}}=\frac{4}{\sqrt{2011}+\sqrt{2015}}\)
\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}>0\)
\(\Rightarrow A-B>0\Rightarrow A>B\)
tính gtrị của biểu thức bằng máy tính cásio(giải thích rõ hộ mình nha)
\(\sqrt[2011]{2010\sqrt[2010]{2009\sqrt[2009]{2008\sqrt[2008]{2007........\sqrt[2002]{2001\sqrt[2001]{2000}}}}}}\)
so sánh\(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\)và\(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
So sánh: \(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\) và \(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
Ta có
\(\hept{\begin{cases}\sqrt{2008}+\sqrt{2005}< \sqrt{2015}+\sqrt{2009}\left(1\right)\\\sqrt{2010}+\sqrt{2007}< \sqrt{2015}+\sqrt{2009}\left(2\right)\end{cases}}\)
\(\Rightarrow\frac{1}{\sqrt{2008}+\sqrt{2005}}+\frac{1}{\sqrt{2010}+\sqrt{2007}}>\frac{2}{\sqrt{2015}+\sqrt{2009}}\)
\(\Leftrightarrow\frac{\sqrt{2008}-\sqrt{2005}}{3}+\frac{\sqrt{2010}-\sqrt{2007}}{3}>\frac{\sqrt{2015}-\sqrt{2009}}{3}\)
\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
A=√2008+√2009+√2010A=2008+2009+2010 và B=√2005+√2007+√2015
k và kb với mình nha !!!
so sánh 2 số:
a, \(\sqrt{2014}+\sqrt{2016}\) và \(2\sqrt{2015}\)
b, \(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\) và \(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
a. Ta có \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\to\frac{1}{\sqrt{2016}+\sqrt{2015}}
Cho \(a=\sqrt{2010}-\sqrt{2009}\) và \(b=\sqrt{2009}-\sqrt{2008}\)
So sánh
a/ \(\sqrt{2010} -\sqrt{2009} và \sqrt{2008} - \sqrt{2007}\)
tính giá trị biểu thức (\(\sqrt{2009}\)-\(\sqrt{2008}\))\(x^2\)- (\(\sqrt{2008}\)-\(\sqrt{2007}\))x +6\(\sqrt{2008}\)-2\(\sqrt{2007}\)
với x = \(\frac{2\sqrt{2009}-3\sqrt{2008}+\sqrt{2007}}{\sqrt{2008}-\sqrt{2009}}\)
A= \(\sqrt{2008}\)+\(\sqrt{2009}\)+\(\sqrt{2010}\) va B= \(\sqrt{2005}\)+\(\sqrt{2007}\)+\(\sqrt{2015}\) so sanh