Tìm các số abc biết a+b+c = 9 và a < b < c
tìm các số abc biết a+b+c=9 và a>b>c
Lời giải:
Vì $a> b> c$ nên:
$9=a+b+c> c+c+c$
Hay $9> 3\times c$
Suy ra $c< 9:3$ hay $c< 3$. Vì $c$ là số tự nhiên nên $c$ có thể nhận các giá trị $0,1,2$
Nếu $c=0$ thì: $a+b=9-c=9-0=9$
Vì $a>b>0$ nên có các trường hợp: $a=5$ và $b=4$, $a=6$ và $b=3$, $a=7$ và $b=2$, $a=8$ và $b=1$
Nếu $c=1$ thì $a+b=9-c=9-1=8$
Vì $a>b>1$ nên có các trường hợp: $a=5$ và $b=3$, $a=6$ và $b=2$
Nếu $c=2$ thì $a+b=9-2=7$.
Vì $a>b>2$ nên có các trường hợp: $a=4$ và $b=3$
Vậy.........
Tìm các số abc , biết :
a+b+c =9 và a>b>c
Đáp án là : A=4
B=3
C=2
Tổng của 3 số là 9
Mà A>B>C
a,Tìm các chữ số a,b thích hợp để số 217ab chia hét cho 6,7 và 18
b,Tìm các chữ số a,b,c thích hợp để 179abc chia hết cho 5,7 và 9
c,Tìm các chữ số a,b,c,d biết abcd + abc+ab+a=4321
Tìm các số abc cùng chia hết cho 5 và 9,biết a<b<c
Tìm các chữ số a,b,c biết abc - abc =99 và a+c=9
Tìm các số abc cùng chia hết cho 5 và 9,biết a<b<c
810,540,720,630,531 chị tìm cho em mấy số rùi đó chứ kể thì mấy trăm số lận .
Tìm các số nguyên a, b, c, d biết các số đó thỏa mãn các điều kiện sau
a, abcd = 120 , abc = -30 , ab = -6 , bc = -15
b, a+ b = -1 , a +c = 6 và b + c =1
c, a+ b+ c= -6 , b+c+d = -9 , c +d + a= -8 , d +a+b = -7
a) ta có
abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4
abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5
bc=-15 mà c=5 suy ra b=-3
ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2
b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6
suy ra a+b+c = 3 mà a+b= -1 suy ra c=4
suy ra a=6-4=2; b=1-4 = -3
c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30
suy ra a+b+c+d= -10
mà a+b+c = -6
suy ra d=-4
nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1
suy ra a=-6, b= 3, c= 2
a, d=-4 c=5 b=-3 a=2
b, c=4 a=2 b=-3
c, d=-4 a=-1 c=-3 b=-2
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 9:
\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=1\)
\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Câu 10:
\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b\)
\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Câu 13:
\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)
Câu 6:
$2=(a+b)(a^2-ab+b^2)>0$
$\Rightarrow a+b>0$
$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$
$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$
$\Rightarrow N\leq 2$
Vậy $N_{\max}=2$
Câu 7:
BĐT $\Leftrightarrow a^3+b^3\geq ab(a+b)$
$\Leftrightarrow a^3+b^3-ab(a+b)\geq 0$
$\Leftrightarrow (a-b)^2(a+b)\geq 0$ (luôn đúng với mọi $a,b,c>0$)
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b>0$, $c$ dương bất kỳ.
Tìm các chữ số a,b,c trong số thập phân 0,abc (a,b,c khác nhau và khác 0).Biết 0,abc=1:(a+b+c)
0,abc = 1: (a + b + c)
=> \(\frac{abc}{1000}=\frac{1}{a+b+c}\) => abc . (a+b +c) = 1000
Viết 1000 = 500.2 = 250.4 = 125.8 = 200 .5 = 100.10
thủ các cặp số trên, chỉ cố abc = 125 thỏa mãn
Vậy a = 1; b = 2; c = 5