Tìm tất cả các số nguyên n (n\(\ne\)0) để số \(M=n^4-n^3+13n^2\)là số chính phương
Tìm tất cả các số tự nhiên n để các số: n-1, n5 + n4 + n3 + 13n2 + 13n + 14 đều là số chính phương
n^2+n+6=k^2
4n^2+4n+24=4k^2
(2n+1)^2-(2k)^2=-23
(2n+1-2k)(2n+1+2k)=-23
Đến đây bạn tự giải tiếp nhé
Tìm tất cả các số nguyên n (n\(\ne\)0) để số
\(M=n^4-n^3+13n^2\) là số chính phương
\(M=n^2\left(n^2-n+13\right)\)
Để \(M\) là SCP \(\Leftrightarrow n^2-n+13\) là SCP
\(\Leftrightarrow n^2-n+13=k^2\)
\(\Leftrightarrow4n^2-4n+52=k^2\)
\(\Leftrightarrow\left(2n-1\right)^2+51=k^2\)
\(\Leftrightarrow\left(k-2n+1\right)\left(k+2n-1\right)=51\)
Phương trình ước số cơ bản, bạn tự giải
Tìm tất cả các số nguyên n để n^4 + 3n^3 + 3n^2 là số chính phương
Lời giải:
$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$
Để $A$ là scp thì $n^2+3n+3$ là scp.
Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.
$\Rightarrow 4n^2+12n+12=4x^2$
$\Rightarrow (2n+3)^2+3=4x^2$
$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$
Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.tập hợp các số nguyên n để n^4+3n^3 +9n^2+13n +6 là số chính phương
Tìm tất cả các số nguyên n để \(n^4+2n^3+2n^2+n+7\)là số chính phương
tìm các số tự nhiên n sao cho n-1 và n^5+n^4+n^3+13n^2+13n+14 đêu là các số chính phương
Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Tìm tất cả các số nguyên n để A = n^2+ n+1 là số chính phương?