Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quynh duyen pham
Xem chi tiết
Nguyễn Ngọc Quý
26 tháng 11 2015 lúc 7:22

1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)

Vậy chia hết cho 30

\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)

Vậy chia hết cho 31

 

Nhok Con CHibi
4 tháng 1 2017 lúc 19:42

haizzzzzzzzzzz câu 2 làm tek nào z

Nguyễn Trúc Phương
Xem chi tiết
jjjjjjjj
Xem chi tiết
Phạm Hải Đăng
16 tháng 11 2018 lúc 21:14

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

Phạm Hải Đăng
16 tháng 11 2018 lúc 21:18

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

Thu Thảo
Xem chi tiết
HT.Phong (9A5)
23 tháng 10 2023 lúc 9:51

a) \(S=5+5^2+...+5^{2006}\)

\(5S=5^2+5^3+...+5^{2007}\)

\(5S-S=5^2+5^3+...+5^{2007}-5-5^2-...-5^{2006}\)

\(4S=5^{2007}-5\)

\(S=\dfrac{5^{2007}-5}{4}\)

b) Ta có:

\(S=5+5^2+...+5^{2006}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2005}+5^{2006}\right)\)

\(S=\left(5+25\right)+5^2\cdot\left(5+25\right)+...+5^{2004}\cdot\left(5+25\right)\)

\(S=30+5^2\cdot30+...+5^{2004}\cdot30\)

\(S=30\cdot\left(1+5^2+...+5^{2004}\right)\)

Vậy: S ⋮ 30 

Phan Ngọc Bảo Trân
Xem chi tiết
minqưerty6
Xem chi tiết
HT.Phong (9A5)
21 tháng 10 2023 lúc 11:46

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

hà trọng hùng
Xem chi tiết
Hồ Thu Giang
29 tháng 7 2015 lúc 8:49

S = 5+52+53+54+....+52004

S = (5+52)+(53+54)+...+(52003+52004)

S = 1(5+52)+52(5+52)+.....+52002(5+52)

S = 1.30 + 52.30 +.....+52002.30

S = 30.(1+52+....+52002) chia hết cho 30

=> S chia hết cho 30 (Đpcm)

Minh Hoàng Nguyễn
Xem chi tiết
Vũ Tấn Long
Xem chi tiết