Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Đức Mạnh
Xem chi tiết
Pé Jin
Xem chi tiết
Kenny Hoàng
10 tháng 12 2015 lúc 22:08

(2x - 5)2000 + (3y + 4)2002

ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0

=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0

Dấu "=" xảy ra khi 2x - 5 = 0  và 3y + 4 = 0

=> 2x = 5 và 3y = -4

=> x = 2,5 và y = \(\frac{-4}{3}\)

nguyễn phan an
28 tháng 8 2020 lúc 10:05

bé hơn mà có phải lớn hơn 0 đâu ?

Khách vãng lai đã xóa
Như Trần khánh
17 tháng 11 2021 lúc 15:25

Do(2x-5)^2020 lớn hơn hoặc =0

     (3y+4)^2002 lớn hơn hoặc =0

suy ra (2x-5)^2020+(3y+4)^2002 lớn hơn hoặc =0

dấu ''='' xảy ra khi 

2x-5=0                    2x=5                         x=5/2

3y+4=0                   3y=-4                        y=-4/3

Thiên Thu Nguyệt
Xem chi tiết
Trần Tiến Sơn
24 tháng 6 2017 lúc 8:19

x=5/2;y=-4/3

zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 19:31

\(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2000}\ge0\forall x,y\)

Kết hợp giả thiết ta có:\(2x-5=0;3y+4=0\Rightarrow x=\frac{5}{2};y=-\frac{4}{3}\)

Khách vãng lai đã xóa
Vinh Trinh
Xem chi tiết
Kurosaki Akatsu
27 tháng 7 2017 lúc 20:34

Có :

\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\)

Mà theo đề bài : \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Wuttara Hoàng Phú
Xem chi tiết
Wuttara Hoàng Phú
6 tháng 7 2019 lúc 12:20

Các bạn trả lời cho mình đi mình sẽ k cho bạn

Sooya
6 tháng 7 2019 lúc 13:34

\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)        (1)

có :  \(\left(2x-5\right)^{2000}\ge0\forall x\)

\(\left(3y+4\right)^{2002}\ge0\forall x\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\)     (2)

\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)

Alex Queeny
Xem chi tiết
Ác Mộng
8 tháng 7 2015 lúc 21:26

Do (2x-5)2000>0

(3y+4)2002>0

Mà (2x-5)2000+(3y+4)2002<0

=>(2x-5)2000=0 (3y+4)2002=0

<=>x=2,5 y=4/3

Nguyễn Thị Hạnh Linh
Xem chi tiết
Đào Thị An Na
5 tháng 7 2017 lúc 9:03

 x=1 nha bạn

Harry Potter
Xem chi tiết
I - Vy Nguyễn
18 tháng 2 2020 lúc 20:53

Ta có :\(\left(2x-5\right)^{2000}\) \(\geq\) \(0\) \(;\) \(\left(3y+4\right)^{2002}\) \(\geq\) \(0\)

\(\implies\)  \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) \(\geq\)  \(0\) (1)

  Mà theo đầu bài ra ta có: \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) <\(0\) (2)

Từ (1);(2)  \(\implies\)  Không có số nguyên  x;y nào nhỏ hơn hoặc bằng 0 thỏa mãn ycbt

Khách vãng lai đã xóa
Harry Potter
19 tháng 2 2020 lúc 10:33

thank bn iu

Khách vãng lai đã xóa
ha nguyen thi
Xem chi tiết
Trên con đường thành côn...
27 tháng 7 2021 lúc 21:17

undefined

Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 22:50

Ta có: \(\left(2x-8\right)^{2000}+\left(3y+4\right)^{2022}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-8=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\dfrac{4}{3}\end{matrix}\right.\)