Cho tam giác ABC cân tại A. Điểm M thuộc tia đối của tia BC. Chứng minh rằng hiệu các khoảng cách từ điểm M đến các đường thẳng AC và AB bằng chiều cao tương ứng với cạnh bên của tam giác ABC.
Cho tam giác ABC cân ( AB=AC; góc A tù ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy E sao choBD=CE. Trên tia đối của CA lấy điểm I sao cho CI=CA.
a) Chứng minh: AB+AC < AD+AE
b) Từ D và E kẻ các đường thẳng cùng vuông góc với BC cắt AB; AI theo thứ tự tại M;N. Chứng minh BM=CN.
c) Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN.
Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt tại M và N.
Chứng minh rằng :
a) DM=EN
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN;
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
Cho tam giác ABC cân tại A.Trên cạnh BC lấy điểm D khác C,sao cho CD<\(\frac{1}{2}\)CB,trên tia đối của tia BC lấy điểm E sao cho BE=CD.Các đường thẳng vuông góc với BC kẻ từ D và E cắt các đường thẳng sao AC và AB lần lượt ở K và F. Chứng minh rằng:
a. DK=EF
b. Đường thẳng BC cắt FK tại điểm I là trung điểm của đoạn thẳng FK.
c. Đường thẳng vuông góc với FK tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
CHo tam giác ABC cân tại A. Lấy điểm E thuộc cạnh AB, D thuộc tia đối của tia CA sao cho AE+AD=AB+AC. Kẻ đường thẳng d đi qua C song song với DE, kẻ đường thẳng d' qua E song song với DC. Hai đường thẳng d và d' cắt nhau tại F. C/m rằng tam giác FEB cân
Cho tam giác cân ABC ( AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB,AC lần lượt tại M,N. Chứng minh rằng :
1) DM=EM
2) Đường thẳng vuông góc với BC cắt MN tại trung điểm I của MN.
3) Đường thẳn vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC.
Dạ xin được dành phần c bài này cho bạn Văn Hoàng ở Đăng Đạo ạ
Cho tam giác ABC (AB < AC). Vẽ tia phân giác AL của góc A (L thuộc BC).
Từ trung điểm M của cạnh BC vẽ đường thẳng vuông góc với AL, đường thẳng này cắt AC tại E và cắt AB tại D. Kẻ BB' // ED.
a) Chứng minh AD = AE và B'E = EC = BD.
b) Chứng minh các hệ thức sau :
1) 2AD = AB + AC
2) 2EC = AC - AB
c) Tính số đo góc BMD theo góc B và góc C
: Cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM = CK
b, Chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MN, Q là giao điểm của AC và MK.
d, Chứng minh: PQ song song với BC.
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC )
d) chứng minh tam giác BEI là tam giác cân.
b) chứng tỏ OE = OF.
c) đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại O. CHỨNG tỏ tam giác EKF là tam giác cân và OK vuông góc với EF.
1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q
chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)
2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE
3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.
chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)
4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB
5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.
chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)
giúp mình với :3. mình sắp thi rồi
p/s không biết làm bài nào chứ không phải lười đâu :((