rút gọn biểu thức A=(x-2)^3+6(x+1)^2-(x^2+3x+9)*(x-3)
Rút gọn biểu thức sau :
A = (3x-x^2/9-x^2 - 1) : (9-x^2/x^2+x-6 + x-3/2-x - x+2/x+3)
\(A=\left(\dfrac{3x-x^2}{9-x^2}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}+\dfrac{x-3}{2-x}-\dfrac{x+2}{x+3}\right)\left(dk:x\ne\pm3,x\ne2\right)\)
\(=\dfrac{3x-x^2-9+x^2}{9-x^2}:\left(\dfrac{9-x^2}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{x-2}-\dfrac{x+2}{x+3}\right)\)
\(=\dfrac{3x-9}{9-x^2}:\dfrac{9-x^2-\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-\left(x^2-9\right)-\left(x^2-4\right)}\)
\(=-\dfrac{3}{x+3}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-x^2+9-x^2+4}\)
\(=\dfrac{-3\left(x-2\right)}{22-3x^2}\)
\(=\dfrac{-3x+6}{22-3x^2}\)
Vậy \(A=\dfrac{-3x+6}{22-3x^2}\) với \(x\ne\pm3,x\ne2\)
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
rút gọn biểu thức (3+x/3-x+2x/3+x -4x^2-3x-9/x^2-9):(2/3-x -x-1/3x-x^2)
(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)
\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)
rút gọn biểu thức
a)x(x-2)(x+2)+(x+3)(x^2-3x+9)
b)(3x+2)^2-18x(3x+2)+(x-1)^3-28x^3+3x(x-1)
Rút gọn biểu thức M = \(\dfrac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}:2\sqrt{1+\dfrac{2x}{3-x}}\)
\(M=\dfrac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}:2\sqrt{\dfrac{3-x+2x}{3-x}}\left(-3\le x< 3;x\ne-1\right)\\ M=\dfrac{\sqrt{x+3}\left(x+2+x\sqrt{3-x}\right)}{\sqrt{3-x}\left[x+\left(x+2\right)\sqrt{3+x}\right]}:2\sqrt{\dfrac{x+3}{3-x}}\\ M=\dfrac{\sqrt{x+3}\left(x+2+x\sqrt{3-x}\right)}{\sqrt{3-x}\left[x+\left(x+2\right)\sqrt{3+x}\right]}\cdot\dfrac{3-x}{2\sqrt{\left(3-x\right)}\sqrt{\left(x+3\right)}}\)
\(M=\dfrac{x+2+x\sqrt{3-x}}{x+\left(x+2\right)\sqrt{3-x}}\cdot\dfrac{\sqrt{3-x}}{2\sqrt{3-x}}\\ M=\dfrac{\left(x+2\right)\sqrt{3-x}+x\left(3-x\right)}{2x\sqrt{3-x}+2\left(x+2\right)\sqrt{3-x}}\\ M=\dfrac{\sqrt{3-x}\left(2x+2\right)}{\sqrt{3-x}\left(2x+2x+4\right)}=\dfrac{2\left(x+1\right)}{4\left(x+1\right)}=\dfrac{1}{2}\)
Rút gọn biểu thức :
a/ (x-3)(\(x^2\)+3x+9)-(\(x^2\)-1)(9x+27)
b/ (x-2)(\(x^2\)+2x+4)-x(x-3)(x+3)
a, `(x-3)(x^2+3x+9)-(x^2-1)(9x+27)`
`=x^3-3^3-(9x^3+27x^2-9x-27)`
`=x^3-3^3-9x^3-27x^2+9x+27`
`=-8x^3-27x^2+9x`
b, `(x-2)(x^2+2x+4)-x(x-3)(x+3)`
`=x^3-2^3-x(x^2-9)`
`=x^3-8-x^3+9x`
`=9x-8`
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-1\right)\left(9x+27\right)\)
\(=x^3-27-\left(9x^3+27x^2-9x-27\right)\)
\(=x^3-27-9x^3-27x^2+9x+27\)
\(=-8x^3-27x^2+9x\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-3\right)\left(x+3\right)\)
\(=x^3-8-x\left(x^2-9\right)\)
\(=x^3-8-x^3+9x\)
\(=9x-8\)
Rút gọn biểu thức sau
a)(x^2-1)^3-(x^4+x^2+1)(x^2-1)
b)(x^4-3x^2+9)(x^2+3-(3+x^2)^3
c)(x-3)^3-(x-3)(x^2+3x+9)+6(x+1)^2
Help me chiều nay mk đi học rồi
a) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]\)
\(=\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=\left(x^2-1\right)\left(-3x^2\right)\)
\(=-3x^4+3x^2=3\left(x^2-x^4\right)=3\left(x-x^2\right)\left(x+x^2\right)=\left(3x-3x^2\right)\left(x+x^2\right).\)
b)\(\left(x^4-3x^2+9\right)\left(x^2+3-\left(3+x^2\right)\right)^3=\left(x^4-3x^2+9\right).0^3=0\)
c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=\left(x-3\right)^3-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^3-\left[\left(x-3\right)^3+3.x.3.\left(x-3\right)\right]+6x^2+12x+6\)
\(=6x^2+12x+6-9x\left(x-3\right)=6x^2+12x+6-9x^2+27x\)
\(=39x-3x^2+6=3\left(13x-x^2+2\right).\)
cho biểu thức A=5/x+3-2/3-x-3x^2-2x-9/x^2-9 a. Rút gọn A