Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phùng lê minh anh
Xem chi tiết
Ác Mộng
22 tháng 6 2015 lúc 16:18

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Ta có:\(\frac{a^2+ac}{c^2-ac}=\frac{b^2k^2+bk.dk}{d^2k^2-bk.dk}=\frac{bk^2\left(b+d\right)}{dk^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(2)

Từ 1 và 2 =>\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
 

Lê Minh Ngọc
22 tháng 2 2018 lúc 20:42

What là cái gì?

Lê Minh Ngọc
22 tháng 2 2018 lúc 20:45

Link:http//ngocrong//

Roxie
Xem chi tiết
Vũ Minh Tuấn
15 tháng 9 2019 lúc 11:22

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

Ta có: \(\frac{a^2+ac}{c^2-ac}=\frac{b^2.k^2+bk.dk}{d^2.k^2-bk.dk}=\frac{bk^2.\left(b+d\right)}{dk^2.\left(d-b\right)}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (2)

Từ (1) và (2) => \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\left(đpcm\right).\)

Chúc bạn học tốt!


Dũng Nguyễn Xuân
Xem chi tiết
Mangekyou sharingan
Xem chi tiết
Vũ Minh Tuấn
9 tháng 9 2019 lúc 10:00

a) Sửa lại đề là \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

Ta có: \(\frac{a^2+ac}{c^2-ac}=\frac{b^2.k^2+bk.dk}{d^2.k^2-bk.dk}=\frac{bk^2.\left(b+d\right)}{dk^2.\left(d-b\right)}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\left(1\right)\)

\(\frac{b^2+bd}{d^2-bd}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\left(2\right).\)

Từ \(\left(1\right)và\left(2\right)\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\left(đpcm\right).\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

lữ đức lương
Xem chi tiết
Vũ Diệu Linh
Xem chi tiết
Le Phuc Thuan
Xem chi tiết
Đinh Đức Hùng
8 tháng 3 2017 lúc 18:53

Ta có :

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+ac}{b^2+bd}=\frac{c^2-ac}{d^2-bd}\)

\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\) (đpcm)

Nguyễn Anh Tú
Xem chi tiết
Doraemon
8 tháng 3 2015 lúc 10:04

Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{c-a}{d-b}\)

Điều cần CM là \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Rightarrow\frac{a^2+ac}{b^2+bd}=\frac{c^2-ac}{d^2-bd}\)

                                                       \(=\frac{a\left(a+c\right)}{b\left(b+d\right)}=\frac{c\left(c-a\right)}{d\left(d-b\right)}\)

Mà theo chứng minh trên ta có: \(\frac{a}{b}=\frac{c}{d};\frac{a+c}{b+d}=\frac{c-a}{d-b}\)

Từ đó ta\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

 

kiuoilakiu
2 tháng 8 2016 lúc 21:46

ban oi theo mình thì phải giải từ trên xuống từ a/b=c/d chứ

tommyanhem1
Xem chi tiết