Cho x,y,z dương thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}>=2\)
Tìm GTLN của P=xyz
cho ba số thực dương x,y,z thỏa mãn xyz=1.Tìm GTLN của biểu thức:\(Q=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
Ta có: \(xyz=1\)=>\(xy=\frac{1}{z}\)
Theo BĐT cosy, ta có: \(x+y+1\ge3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{3\sqrt[3]{z}}\)
tương tự:\(y+z+1\ge3\sqrt[3]{\frac{1}{x}}=\frac{3}{\sqrt[3]{x}}\)
\(z+x+1\ge3\sqrt[3]{\frac{1}{y}}=\frac{3}{\sqrt[3]{y}}\)
=> \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{x}}{3}+\frac{\sqrt[3]{y}}{3}=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
Áp dụng BĐT trên lần nữa ta được \(Q\le\frac{3\sqrt[3]{\sqrt[3]{xyz}}}{3}=\frac{3}{3}=1\)
Vậy DTLN của Q=1
dấu "=" xảy ra khi x=y=z=1
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)..Tìm GTLN của xyz
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)
\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)
\(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)
\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)
\(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)
Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)
Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z
P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý
Cho x, y, z là các số thực dương thỏa mãn :x + y + z = xyz
Tìm GTLN của \(P=\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}+\dfrac{b}{\sqrt{ab+bc+ca+b^2}}+\dfrac{c}{\sqrt{ab+bc+ca+c^2}}\)
\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(P=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{c+a}.\dfrac{c}{2\left(c+b\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{c+a}+\dfrac{c}{2\left(c+b\right)}\right)=\dfrac{9}{4}\)
\(P_{max}=\dfrac{9}{4}\) khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\) hay \(\left(x;y;z\right)=\left(\dfrac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)
Cho x, y, z là 3 số dương thỏa mãn xyz=1
Tìm GTLN của biểu thức: A= \(\frac{1}{x^3+y^3+1}\)+\(\frac{1}{y^3+z^3+1}\)+\(\frac{1}{z^3+x^3+1}\)
Cho x,y,z là các số thực thỏa mãn xyz=1
Tìm GTLN của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
x,y,z là số thực à khó đấy số dương thì mk còn làm đc
chứ số thực mk chịu
Biến đổi tương đương ta CM được BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có: \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{xyz\left(x+y+z\right)}\)
CM tương tự với các phân thức còn lại
Cộng vế theo vế các BĐT đó ta được:
\(A\le\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Vậy Max A=1 <=> x=y=z=1
Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=\frac{1}{\sqrt{xyz}}\)
Tìm giá trị lớn nhất của P = \(\frac{2\sqrt{x}}{1+x}+\frac{2\sqrt{y}}{1+y}+\frac{z-1}{z+1}\)
Cho x;y;z nguyên dương thỏa mãn :x+y+z=xyz
CMR:
\(\frac{1+\sqrt{x^2+1}}{x}+\frac{1+\sqrt{y^2+1}}{y}+\frac{1+\sqrt{z^2+1}}{z}< =xyz\)
từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)
Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3
Cho 3 số x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
Tìm GTLN của \(F=xyz\)
\(\frac{1}{x+1}\ge\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)=\frac{y}{y+1}+\frac{z}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right).\left(z+1\right)}}\)
Tương tự : \(\frac{1}{y+1}\ge\frac{x}{x+1}+\frac{z}{z+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\)
\(\frac{1}{z+1}\ge\frac{x}{x+1}+\frac{y}{y+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
Nhân các vế lại với nhau : \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Rightarrow xyz\le\frac{1}{8}\)
Vậy Max F = 1/8 <=> x = y = z = 1/2
Cho x,y,z là các số thực dương thoả mãn xyz=1
Tìm GTLN của biểu thức Q=\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
(Giải rõ ràng ra giùm mik)
áp dụng bdt cô si dạng " Rei' ta có
\(x+y+1\le3\sqrt[3]{xy}\)
từ đề bài ta suy ra \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)
suy ra \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)
áp dụng cho các BDT còn lại
\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)
suy ra \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên
vậy
\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
áp dụng BDT cô si dạng "Shinra" ta có , đặt tử số = S
\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)
có xyz=1 vậy \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)
suy ra \(S\ge3\) ( ngược dấu loại )
cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được
lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện và chỉ lừa được những thằng ngu
không nên dùng trc mặt thầy cô giáo :) .
\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)
tương tự vs các BDt còn lại và đặt tử số = S ta được
\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\)
thay \(S\le3\) vào biểu thức ta được
\(Q\le\frac{3}{3}=1\)
vây Max Q là 1 dấu = xảy ra khi x=y=z=1
Đệch, nói luôn côsi 3 số cho r
Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn